scholarly journals Measure-Dependent Stochastic Nonlinear Beam Equations Driven by Fractional Brownian Motion

2013 ◽  
Vol 2013 ◽  
pp. 1-16
Author(s):  
Mark A. McKibben

We study a class of nonlinear stochastic partial differential equations arising in the mathematical modeling of the transverse motion of an extensible beam in the plane. Nonlinear forcing terms of functional-type and those dependent upon a family of probability measures are incorporated into the initial-boundary value problem (IBVP), and noise is incorporated into the mathematical description of the phenomenon via a fractional Brownian motion process. The IBVP is subsequently reformulated as an abstract second-order stochastic evolution equation driven by a fractional Brownian motion (fBm) dependent upon a family of probability measures in a real separable Hilbert space and is studied using the tools of cosine function theory, stochastic analysis, and fixed-point theory. Global existence and uniqueness results for mild solutions, continuous dependence estimates, and various approximation results are established and applied in the context of the model.

Author(s):  
Xia Zhou ◽  
Dongpeng Zhou ◽  
Shouming Zhong

Abstract This paper consider the existence, uniqueness and exponential stability in the pth moment of mild solution for impulsive neutral stochastic integro-differential equations driven simultaneously by fractional Brownian motion and by standard Brownian motion. Based on semigroup theory, the sufficient conditions to ensure the existence and uniqueness of mild solutions are obtained in terms of fractional power of operators and Banach fixed point theorem. Moreover, the pth moment exponential stability conditions of the equation are obtained by means of an impulsive integral inequality. Finally, an example is presented to illustrate the effectiveness of the obtained results.


2019 ◽  
Vol 14 (3) ◽  
pp. 311 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Zakia Hammouch ◽  
Dumitru Baleanu

A virus that causes hepatitis E is known as (HEV) and regarded on of the reason for lever inflammation. In mathematical aspects a very low attention has been paid to HEV dynamics. Therefore, the present work explores the HEV dynamics in fractional derivative. The Caputo–Fabriizo derivative is used to study the dynamics of HEV. First, the essential properties of the model will be presented and then describe the HEV model with CF derivative. Application of fixed point theory is used to obtain the existence and uniqueness results associated to the model. By using Adams–Bashfirth numerical scheme the solution is obtained. Some numerical results and tables for arbitrary order derivative are presented.


Author(s):  
Mohammed A. Almalahi ◽  
Satish K. Panchal

AbstractIn this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα -Ulam-Hyers stability of the presented problem. Also, we use the generalized Gronwall inequality with singularity to establish continuous dependence and uniqueness of the δ-approximate solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
N. A. Larkin

An initial-boundary value problem for the 2D Kawahara-Burgers equation posed on a channel-type strip was considered. The existence and uniqueness results for regular and weak solutions in weighted spaces as well as exponential decay of small solutions without restrictions on the width of a strip were proven both for regular solutions in an elevated norm and for weak solutions in theL2-norm.


Filomat ◽  
2020 ◽  
Vol 34 (14) ◽  
pp. 4881-4891
Author(s):  
Adel Lachouri ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi

In this paper, we use the fixed point theory to obtain the existence and uniqueness of solutions for nonlinear implicit Riemann-Liouville fractional differential equations with nonlocal conditions. An example is given to illustrate this work.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Lian ◽  
Vicenţiu D. Rădulescu ◽  
Runzhang Xu ◽  
Yanbing Yang ◽  
Nan Zhao

Abstract In this paper, we consider the initial boundary value problem for a class of fourth-order wave equations with strong damping term, nonlinear weak damping term, strain term and nonlinear source term in polynomial form. First, the local solution is obtained by using fix point theory. Then, by constructing the potential well structure frame, we get the global existence, asymptotic behavior and blowup of solutions for the subcritical initial energy and critical initial energy respectively. Ultimately, we prove the blowup in finite time of solutions for the arbitrarily positive initial energy case.


2016 ◽  
Vol 34 (1) ◽  
pp. 151-172 ◽  
Author(s):  
Nikolai Andreevitch Larkine

An initial-boundary value problem for the 2D Zakharov-Kuznetsov-Burgers equation posed on a channel-type strip was considered. The existence and uniqueness results for regular and weak solutions in weighted spaces as well as exponential decay of small solutions without restrictions on the width of a strip were proven both for regular solutions in an elevated norm and for weak solutions in the $L^2$-norm.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Gaston M. N'Guérékata

This paper deals with some existence of mild solutions for two classes of impulsive integrodifferential equations in Banach spaces. Our results are based on the fixed point theory and the concept of measure of noncompactness with the help of the resolvent operator. Two illustrative examples are given in the last section.


2019 ◽  
Vol 150 (3) ◽  
pp. 1467-1494
Author(s):  
Claudio A. Gallegos ◽  
Hernán R. Henríquez

AbstractIn this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Lahcen Ibnelazyz ◽  
Karim Guida ◽  
Said Melliani ◽  
Khalid Hilal

The aim of this paper is to give the existence as well as the uniqueness results for a multipoint nonlocal integral boundary value problem of nonlinear sequential fractional integrodifferential equations. First of all, we give some preliminaries and notations that are necessary for the understanding of the manuscript; second of all, we show the existence and uniqueness of the solution by means of the fixed point theory, namely, Banach’s contraction principle and Krasnoselskii’s fixed point theorem. Last, but not least, we give two examples to illustrate the results.


Sign in / Sign up

Export Citation Format

Share Document