scholarly journals Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ziqiang Chi ◽  
Minping Jia ◽  
Qingsong Xu

Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.

2014 ◽  
Vol 620 ◽  
pp. 363-368
Author(s):  
Lian Xia ◽  
Jing Qiu ◽  
Jiang Han

In this paper, theory analysis, the MATLAB research and experimental verification about feedforward fuzzy PID control have been performed by combining the characteristics of the PID, feedforward control and fuzzy control. Simulation results show that the feedforward fuzzy PID control could improve the response speed of the system and reduce the tracking error of the system which shows the obvious superiority compared with the PID, feedforward PID, and fuzzy PID. Load experiment for such four kinds of control modes is done on the linear motor platform, and the experimental results show that the accuracy of the feedforward fuzzy PID control is obviously higher than the other three kinds of control modes and the feedforward fuzzy PID control is easier to be implemented. The position error of feedforward fuzzy PID control is changeless during the load change, and the change of the speed tracking error is small, which proves that the feedforward fuzzy PID control is suitable for the condition of load change or the great disturbance.


2012 ◽  
Vol 220-223 ◽  
pp. 1240-1243
Author(s):  
Yu Yu Zhu ◽  
Ya Jun Zhou

The process of tobacco-redrying has the characteristics of lagging, uncertainty and being nonlinear, so it is unable to satisfy every performance target only by using the traditional PID controlling method. In response to this reality, this paper, by using the fuzzy inference ability of fuzzy control, proposes a fuzzy PID based control scheme to achieve the online adjustment of the PID parameters in tobacco-redrying process and to make them in the required range. Simulation results show that the controller can effectively control the process of tobacco-redrying.


Author(s):  
Runqin He

Based on the previous research on the production line automation, this paper carries out further research and further design and development on the basis of the original production line automation equipment. In this paper, the overall design of the automatic production line is carried out, and the various systems in the automatic production line are optimized, and the backward instruments are eliminated, and then some more advanced and convenient instruments are applied. Then, the hardware and software of the automatic production line are studied respectively, and the human-computer interaction module and real-time main control circuit module are re developed, and the electric shaft is applied to the automatic production line. Finally, the fuzzy PID controller of the stepping motor is designed. The experiment shows that the fuzzy PID control scheme is better than the traditional PID control scheme. After the rationalization of the system, the quality robustness of proactive planning is improved obviously. Then, the temperature of motorized spindle was tested.


2014 ◽  
Vol 1014 ◽  
pp. 339-343 ◽  
Author(s):  
Xin Li ◽  
Hui Zhou ◽  
Hao Li ◽  
Xue Song Li

For a novel electric clutch actuator, a nonlinear feedforward-feedback control scheme is proposed to improve the performance of the position tracking control. The feedforward control is designed based on flatness in consideration of the system nonlinearities, and the linear feedback control is given to accommodate the model errors and the disturbances. Lookup tables, which are used to represent nonlinear characteristics of the actuator systems, such as friction force, appear in their original form in the designed feedforward controller. The designed controller is evaluated through simulations and experimental tests, which show that the proposed controller satisfied the control requirement. Comparison with PID control is given as well.


2017 ◽  
Vol 42 (15) ◽  
pp. 10435-10447 ◽  
Author(s):  
Zakaria Baroud ◽  
Mohammed Benmiloud ◽  
Atallah Benalia ◽  
Carlos Ocampo-Martinez

Sign in / Sign up

Export Citation Format

Share Document