scholarly journals Cosmological Constraints on Mirror Matter Parameters

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Paolo Ciarcelluti ◽  
Quentin Wallemacq

Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter,0.06≲Ωmirrorh2≲0.12.

2005 ◽  
Vol 14 (02) ◽  
pp. 223-256 ◽  
Author(s):  
PAOLO CIARCELLUTI

This is the second paper of a series devoted to the study of the cosmological implications of the existence of mirror dark matter. The parallel hidden mirror world has the same microphysics as the observable one and couples the latter only gravitationally. The primordial nucleosynthesis bounds demand that the mirror sector should have a smaller temperature T′ than the ordinary one T, and by this reason its evolution can be substantially deviated from the standard cosmology. In this paper we take scalar adiabatic perturbations as the input in a flat Universe, and compute the power spectra for ordinary and mirror CMB and LSS, changing the cosmological parameters, and always comparing with the CDM case. We find differences in both the CMB and LSS power spectra, and we demonstrate that the LSS spectrum is particularly sensitive to the mirror parameters, due to the presence of both the oscillatory features of mirror baryons and the collisional mirror Silk damping. For x<0.3 the mirror baryon–photon decoupling happens before the matter–radiation equality, so that CMB and LSS power spectra in linear regime are equivalent for mirror and CDM cases. For higher x-values the LSS spectra strongly depend on the amount of mirror baryons. Finally, qualitatively comparing with the present observational limits on the CMB and LSS spectra, we show that for x<0.3 the entire dark matter could be made of mirror baryons, while in the case x≳0.3 the pattern of the LSS power spectrum excludes the possibility of dark matter consisting entirely of mirror baryons, but they could present as admixture (up to ~50%) to the conventional CDM.


2020 ◽  
Vol 499 (3) ◽  
pp. 3563-3570
Author(s):  
Márcio O’Dwyer ◽  
Craig J Copi ◽  
Johanna M Nagy ◽  
C Barth Netterfield ◽  
John Ruhl ◽  
...  

ABSTRACT Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic, with the Northern hemisphere displaying an anomalously low variance, while the Southern hemisphere appears consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM). The low signal-to-noise ratio in current polarization data prevents a similar comparison. Polarization realizations constrained by temperature data show that in ΛCDM the lack of variance is not expected to be present in polarization data. Therefore, a natural way of testing whether the temperature result is a fluke is to measure the variance of CMB polarization components. In anticipation of future CMB experiments that will allow for high-precision large-scale polarization measurements, we study how the variance of polarization depends on ΛCDM-parameter uncertainties by forecasting polarization maps with Planck’s Markov chain Monte Carlo chains. We show that polarization variance is sensitive to present uncertainties in cosmological parameters, mainly due to current poor constraints on the reionization optical depth τ, which drives variance at low multipoles. We demonstrate how the improvement in the τ measurement seen between Planck’s two latest data releases results in a tighter constraint on polarization variance expectations. Finally, we consider even smaller uncertainties on τ and how more precise measurements of τ can drive the expectation for polarization variance in a hemisphere close to that of the cosmic-variance-limited distribution.


1987 ◽  
Vol 124 ◽  
pp. 415-432
Author(s):  
Avishai Dekel

Although some theories, such as that of cold dark matter, are quite successful in explaining certain aspects of the formation of structure, we seem not to approach a satisfactory theory which can easily account for all the observational constraints on all scales. Most difficult to explain are the indicated clustering of clusters and bulk velocities on very large scales, when considered together with the structure on galactic scales and the isotropy of the microwave background. If these observations are correct, the only scenarios that can work are hybrids of certain sorts, which involve somewhat ad hoc choices of parameters; they are not the theories that would have emerged naturally from first principles, and they do not satisfy the criteria of simplicity and elegancy. I will discuss the currently popular scenarios and the apparent difficulties they face.


2011 ◽  
Vol 20 (08) ◽  
pp. 1471-1477
Author(s):  
KIN-WANG NG

Recent measurements of the large-scale cosmic microwave background anisotropy made by the Wilkinson Microwave Anisotropy Probe (WMAP) mission indicate a reflection asymmetry, an axis of evil, a low quadrupole, and a few multipoles deviated from predicted in the cold dark matter model with a cosmological constant. All of these may give us a hint about the physics of inflation during the first few e-folds or during the inflating period. Efforts taken along this direction will be reviewed and our recent work will be discussed.


1990 ◽  
Vol 124 ◽  
pp. 645-649
Author(s):  
Tetsuya Hara ◽  
Shigeru Miyoshi

It has been reported that galaxies in large regions (~102Mpc), including some clusters of galaxies, may be streaming coherently with velocities up to 600km/sec or more with respect to the rest frame determined by the microwave background radiation.) On the other hand, it is suggested that the dominant mass component of the universe is dark matter. Because we can only speculate the motion of dark matter from the galaxy motions, much attention should be paid to the correlation of velocities between the observed galaxies and cold dark matter. So we investigate whether such coherent large-scale streaming velocities are due to dark matter or only to baryonic objects which may be formed by piling up of gases due to some explosive events.


2005 ◽  
Vol 14 (01) ◽  
pp. 107-119 ◽  
Author(s):  
ZURAB BEREZHIANI ◽  
PAOLO CIARCELLUTI ◽  
DENIS COMELLI ◽  
FRANCESCO L. VILLANTE

In the mirror world hypothesis, the mirror baryonic component emerges as a possible dark matter candidate. An immediate question arises: how do the mirror baryons behave and what are their differences from the more familiar dark matter candidates such as cold dark matter? In this paper, we answer this question quantitatively. First, we discuss the dependence of the relevant scales for the structure formation (Jeans and Silk scales) on the two macroscopic parameters necessary to define the model: the temperature of the mirror plasma (limited by the Big Bang Nucleosynthesis) and the amount of mirror baryonic matter. Then we perform a complete quantitative calculation of the implications of mirror dark matter on the cosmic microwave background and large scale structure power spectrum. Finally, confronting with the present observational data, we obtain some bounds on the mirror parameter space.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shuai Xu ◽  
Sibo Zheng

AbstractWe propose a decaying cold dark matter model to explain the excess of electron recoil observed at the XENON1T experiment. In this scenario, the daughter dark matter from the parent dark matter decay easily obtains velocity large enough to saturate the peak of the electron recoil energy around 2.5 keV, and the observed signal rate can be fulfilled by the parent dark matter with a mass of order 10–200 MeV and a lifetime larger than the age of Universe. We verify that this model is consistent with experimental limits from dark matter detections, Cosmic microwave background and large scale structure experiments.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter introduces the Lambda-CDM (cold dark matter) model. In 1948, under the impetus of George Gamow, Robert Hermann, Ralph Alpher, and Hans Bethe in particular, relativistic cosmology entered the second phase of its history. In this phase, physical processes, in particular, nuclear and atomic processes, are taken into account. This provides two observational tests of the model: primordial nucleosynthesis, which explains the origin of light nuclei, and the existence of the cosmic microwave background, and it establishes the fact that the universe has a thermal history. Study of the large-scale structure of the universe then indicates the existence of dark matter and a nonzero cosmological constant. This model, known as the Λ‎CDM model, is the standard model of contemporary cosmology.


2010 ◽  
Vol 19 (14) ◽  
pp. 2151-2230 ◽  
Author(s):  
PAOLO CIARCELLUTI

Mirror matter is a stable self-collisional dark matter candidate. If parity is a conserved unbroken symmetry of nature, there could exist a parallel hidden (mirror) sector of the universe composed of particles with the same masses and obeying the same physical laws as our (visible) sector, except for the opposite-handedness of weak interactions. The two sectors interact predominantly via gravity, therefore mirror matter is naturally "dark". Here I review the cosmological signatures of mirror dark matter, concerning thermodynamics of the early universe, big bang nucleosynthesis, primordial structure formation and evolution, cosmic microwave background and large scale structure power spectra. Besides gravity, the effects on primordial nucleosynthesis of the kinetic mixing between photons and mirror photons are considered. Summarizing the present status of research and comparing theoretical results with observations/experiments, it emerges that mirror matter is not just a viable, but a promising dark matter candidate.


Sign in / Sign up

Export Citation Format

Share Document