scholarly journals Two-Step Beveled UWB Printed Monopole Antenna with Band Notch

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Xiao ◽  
Zhong-Yong Wang ◽  
Ji Li ◽  
Zi-Lun Yuan ◽  
A. K. Qin

This paper presents a novel compact printed monopole ultra-wideband (UWB) antenna featured with the band notch. The proposed antenna consists of a two-step beveled radiant patch and a truncated ground plane, which can provide a good impedance matching from 3.1 GHz to 10.6 GHz. In order to generate the band-notched characteristics, two symmetrical slots are embedded along with the microstrip feeding line, resulting in a band notch from 5.05 GHz to 5.85 GHz. Accordingly, the mutual electromagnetic interference between the UWB and wireless local area network (WLAN) radio communication systems can be eliminated. In addition, it is shown how the slots integrated on the ground plane improve the radiation patterns. The experimental measurements are found to be in good agreement with the numerical simulations.

Author(s):  
Muhammad Irfan Khattak ◽  
Muhammad Irshad Khan ◽  
Zaka Ullah ◽  
Gulzar Ahmad ◽  
Amad Khan

Inherently UWB (Ultra Wideband) communication systems comes with interference problem with some if the existing narrowband communication systems. These bands are stopped with the help of band-stop filter in order to reduce electromagnetic interference However, the complexity and limitations are increased due to these filters, hence this solution is turned down in those applications where design complications and complexity is of concern. Introducing various slots of specific shapes and exact dimensions however, have solved this issue for the researchers around the world. This paper presents a hexagonal PMA (Printed Monopole Antenna) with triple stop bands. The antenna is used for UWB application. The antenna is stopped the WiMAX (Worldwide Interoperability for Microwave Access), WLAN (Wireless Local Area Network) and ITU (International Telecommunication Union) bands. The antenna dimensions are 30x28x16 mm3. FR4 is used between ground and radiating patch with relative permittivity of 4.4. The VSWR (Voltage Standing Wave Ratio) is less than 2 between 3-11 GHz except WiMAX (3.1-3.7 GHz), WLAN (5.1-5.8 GHz) and the ITU frequency band (7.95-8.4 GHz). The antenna is design in CST software.


2015 ◽  
Vol 9 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Shrivastav Arun Kumar ◽  
M. Gulam Nabi Alsath ◽  
Sangeetha Velan ◽  
...  

This paper presents the design, testing, and analysis of a clover structured monopole antenna for super wideband applications. The proposed antenna has a wide impedance bandwidth (−10 dB bandwidth) from 1.9 GHz to frequency over 30 GHz. The clover shaped antenna with a compact size of 50 mm × 45 mm is designed and fabricated on an FR4 substrate with a thickness of 1.6 mm. Parametric study has been performed by varying the parameters of the clover to obtain an optimum wide band characteristics. Furthermore, the prototype introduces a method of achieving super wide bandwidth by deploying fusion of elliptical patch geometries (clover shaped) with a semi elliptical ground plane, loaded with a V-cut at the ground. The proposed antenna has a 14 dB bandwidth from 5.9 to 13.1 GHz, which is suitable for ultra wideband (UWB) outdoor propagation. The prototype is experimentally validated for frequencies within and greater than UWB. Transfer function, impulse response, and group delay has been plotted in order to address the time domain characteristics of the proposed antenna with fidelity factor values. The possible applications cover wireless local area network, C-band, Ku-band, K-band operations, Worldwide Interoperability for Microwave Access, and Wireless USB.


2015 ◽  
Vol 9 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Murli Manohar ◽  
Rakhesh Singh Kshetrimayum ◽  
Anup Kumar Gogoi

In this paper, a band-notched compact printed monopole super wideband (SWB) antenna has been designed and fabricated. The SWB antenna composed of a radiating patch with a 50 Ω triangular tapered feed line which is connected through a feed region, and a chamfered ground plane (CGP), that covers the frequency band from 0.9–100 GHz (ratio bandwidth of 111.1:1) with a reflection coefficient |S11| < −10 dB, except in the notched band of 4.7–6 GHz for Wireless local area network IEEE 802.11a and HIPERLAN/2 WLAN band. To realize the band notch characteristics a C-shape parasitic element is employed near the CGP etched with two symmetrical L-slots and placed under the radiating patch. Proposed antenna structure occupies a relatively small space (30 × 40 × 0.787 mm3) and achieved much wider impedance bandwidth as well as higher gain compared with the existing ultra wideband and SWB antennas.


2015 ◽  
Vol 9 (2) ◽  
pp. 427-436 ◽  
Author(s):  
Rajarshi Sanyal ◽  
Abhirup Patra ◽  
Parthapratim Sarkar ◽  
Santosh Kumar Chowdhury

This paper presents the dual band notch characteristics of Ultra wideband (UWB) monopole antenna. Proposed antenna (30 × 30 mm2) consists of arrow shaped patch and truncated ground plane. Operating range of the proposed antenna (voltage standing wave ratio < 2) is 2.2–11 GHz. In order to achieve dual band stop characteristics, λ/2 open ended angularly separated slit pair has been inserted on the radiator for world interoperability for microwave access (WIMAX) (3.3–3.9 GHz) band rejection performance and wireless local area network (WLAN) (5.1–5.9 GHz) band rejection has been realized by introducing a pair of angularly separated λ/2 conductor backed plane (CBP). Using proper adjustment of angular separation for both slit pair and CBP pair, enhanced band rejection can be achieved for the WIMAX and WLAN band, respectively. The performance of antenna has been investigated in terms of frequency domain and time domain to assess its suitability in UWB communication.


Author(s):  
Issmat Shah Masoodi ◽  
Insha Ishteyaq ◽  
Khalid Muzaffar ◽  
M. Idrees Magray

Abstract A compact antenna module with a single band notch at wireless local area network (WLAN) (5.725–5.825 GHz) for ultra-wideband (UWB) multiple input multiple output (MIMO) applications is proposed. Proposed antenna which acquires size of 0.299 λ × 0.413 λ × 0.005 λ mm3 at 3.1 GHz consists of two symmetrical radiators placed side by side on global merchandise link (GML) 1000 substrate (εr = 3.2, tan δ = 0.004). Isolation between the antenna elements is >18 dB in the whole UWB band, which is achieved by introducing the vertical stub and H-slot between the monopole radiators in the ground plane. The simulated and measured results of the antenna system are in good agreement. The proposed antenna covers entire UWB with impedance bandwidth (|S11| < −15 dB) from 3.1 to 11 GHz except at WLAN notched band. The designed antenna module bears low envelope correlation coefficient and minimal multiplexing efficiency hence fulfilling criteria suitable for various wireless MIMO applications.


2020 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Mohammad Monirujjaman Khan

Development and investigation of a miniaturized ultra-wideband band notch antenna is demonstrated in this paper. The antenna was modeled and simulated using Computer Simulation Technology (CST)TM Microwave Studio software. The simulated results of this antenna are presented and analyzed. The performance parameters such as return loss, gain, radiation efficiency, radiation patterns are simulation-based results provided here. The main objective of this paper was to obtain band notch characteristics at the Wireless Local Area Network (5.15–5.8 GHz) and WiMax (5.25–5.85 GHz) in the UWB frequency ranges of 3.1–10.6 GHz in order to avoid interference. Results and analysis show that the antenna meets the objective and shows very good results. It has very compact size as well which is attractive feature of this antenna that will make it suitable for ultra-wideband wireless communication systems.


The work in the paper demonstrates a rectangular microstrip patch antenna with a Z-shaped CSRR loading in the ground plane. A Z-shaped CSRR created in the ground plane, shown a 63.3% miniaturization in the radiating patch size compared to conventional rectangular patch antenna, resonating at 6.5GHz frequency in C-band. The simulation results find a significant increase in the fractional bandwidth (5.54%, with the centre frequency of 6.5GHz). Furthermore, the antenna has simulated gain of 2.83dB and return loss of -26.33dB at 6.5GHz. The electrical size of proposed antenna is 0.325λo × 0.260λo × 0.034λo (i.e., 15mm×12mm×1.6mm). The proposed antenna may find application in satellite communication systems in C-band and Wireless local area network (WLAN).


2013 ◽  
Vol 347-350 ◽  
pp. 1695-1698 ◽  
Author(s):  
Wen Li ◽  
Jun Jun Wang ◽  
Yan Chao Sun ◽  
Xian Chao Meng

A compact and simple ultra-wideband microstrip-fed planar antenna with double bandstop characteristic is presented. The antenna consists of a rectangular monopole and two W-shaped slots inserted into the radiating patch and the truncated ground plane. By using a W-shaped slot defected ground structure (DGS) in the feedline, a stopband of 800 MHz (from 5.1 to 5.9 GHz) for band rejection of wireless local area network (WLAN) is achieved. To obtain the other stopband (from 3.7-4.4 GHz), a same shaped slot is etched into the monopole. Moreover, the two stopbands can be controlled by adjusting the length of the slot respectively. The simulation results show that the designed antenna, with a compact size of 38.5 mm×42.5 mm, has an impedance bandwidth of 2.811 GHz for voltage standing wave ratio (VSWR) less than 2, besides two frequency stopbands of 3.74.4 GHz and 5.15.9 GHz. Moreover, the main features including omnidirectional H-plane radiation patterns and the appropriate impedance characteristic are achieved by beveling the radiating patch and the microstrip-fed line of the proposed antenna.


Author(s):  
A. Z. Yonis

<p><span lang="EN-US">IEEE 802.11ac based wireless local area network (WLAN) is emerging WiFi standard at 5 GHz, it is new gigabit-per-second standard providing premium services. IEEE 802.11ac accomplishes its crude speed increment by pushing on three distinct measurements firstly is more channel holding, expanded from a maximum of 80 MHz up to 160 MHz modes. Secondly, the denser modulation, now using 256-QAM, it has the ability to increase the data rates up to 7 Gbps using an 8×8 multiple input multiple output (MIMO). Finally, it provides high resolution for both narrow and medium bandwidth channels. This work presents a study to improve the performance of IEEE 802.11ac based WLAN system.</span></p>


Sign in / Sign up

Export Citation Format

Share Document