scholarly journals Accurate Fault Classifier and Locator for EHV Transmission Lines Based on Artificial Neural Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Moez Ben Hessine ◽  
Souad Ben Saber

The ability to identify the fault type and to locate the fault in extra high voltage transmission lines is very important for the economic operation of modern power systems. Accurate algorithms for fault classification and location based on artificial neural network are suggested in this paper. Two fault classification algorithms are presented; the first one uses the single ANN approach and the second one uses the modular ANN approach. A comparative study of two classifiers is done in order to choose which ANN fault classifier structure leads to the best performance. Design and implementation of modular ANN-based fault locator are presented. Three fault locators are proposed and a comparative study of the three fault locators is carried out in order to determine which fault locator architecture leads to the accurate fault location. Instantaneous current and/or voltage samples were used as inputs to ANNs. For fault classification, only the pre-fault and post-fault samples of three-phase currents were used. For fault location, pre-fault and post-fault samples of three-phase currents and/or voltages were used. The proposed algorithms were evaluated under different fault scenarios. Studied simulation results which are presented confirm the effectiveness of the proposed algorithms.

2020 ◽  
Vol 10 (4) ◽  
pp. 1203 ◽  
Author(s):  
Chaichan Pothisarn ◽  
Jittiphong Klomjit ◽  
Atthapol Ngaopitakkul ◽  
Chaiyan Jettanasen ◽  
Dimas Anton Asfani ◽  
...  

This paper presents a comparative study on mother wavelets using a fault type classification algorithm in a power system. The study aims to evaluate the performance of the protection algorithm by implementing different mother wavelets for signal analysis and determines a suitable mother wavelet for power system protection applications. The factors that influence the fault signal, such as the fault location, fault type, and inception angle, have been considered during testing. The algorithm operates by applying the discrete wavelet transform (DWT) to the three-phase current and zero-sequence signal obtained from the experimental setup. The DWT extracts high-frequency components from the signals during both the normal and fault states. The coefficients at scales 1–3 have been decomposed using different mother wavelets, such as Daubechies (db), symlets (sym), biorthogonal (bior), and Coiflets (coif). The results reveal different coefficient values for the different mother wavelets even though the behaviors are similar. The coefficient for any mother wavelet has the same behavior but does not have the same value. Therefore, this finding has shown that the mother wavelet has a significant impact on the accuracy of the fault classification algorithm.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2126 ◽  
Author(s):  
John Morales ◽  
Eduardo Muñoz ◽  
Eduardo Orduña ◽  
Gina Idarraga-Ospina

Based on the Institute of Electrical and Electronics Engineers (IEEE) Standard C37.104-2012 Power Systems Relaying Committee report, topics related to auto-reclosing in transmission lines have been considered as an imperative benefit for electric power systems. An important issue in reclosing, when performed correctly, is identifying the fault type, i.e., permanent or temporary, which keeps the faulted transmission line in service as long as possible. In this paper, a multivariable analysis was used to classify signals as permanent and temporary faults. Thus, by using a simple convolution process among the mother functions called eigenvectors and the fault signals from a single end, a dimensionality reduction was determined. In this manner, the feature classifier based on the support vector machine was used for acceptably classifying fault types. The algorithm was tested in different fault scenarios that considered several distances along the transmission line and representation of first and second arcs simulated in the alternative transients program ATP software. Therefore, the main contribution of the analysis performed in this paper is to propose a novel algorithm to discriminate permanent and temporary faults based on the behavior of the faulted phase voltage after single-phase opening of the circuit breakers. Several simulations let the authors conclude that the proposed algorithm is effective and reliable.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8447
Author(s):  
Umer Ehsan ◽  
Muhammad Jawad ◽  
Umar Javed ◽  
Khurram Shabih Zaidi ◽  
Ateeq Ur Rehman ◽  
...  

In power systems, the programmable numerical differential relays are widely used for the protection of generators, bus bars, transformers, shunt reactors, and transmission lines. Retrofitting of relays is the need of the hour because lack of proper testing techniques and misunderstanding of vital procedures may result in under performance of the overall protection system. Lack of relay’s proper testing provokes an unpredictability in its behavior, that may prompt tripping of a healthy power system. Therefore, the main contribution of the paper is to prepare a step-by-step comprehensive procedural guideline for practical implementation of relay testing procedures and a detailed insight analysis of relay’s settings for the protection of an Extra High Voltage (EHV) auto transformer. The experimental results are scrutinized to document a detailed theoretical and technical analysis. Moreover, the paper also covers shortcomings of existing literature by documenting specialized literature that covers all aspects of protection relays, i.e., from basics of electromechanical domain to the technicalities of the numerical differential relay covering its detailed testing from different reputed manufacturers. A secondary injection relay test set is used for detailed testing of differential relay under test, and the S1 Agile software is used for protection relay settings, configuration modification, and detailed analysis.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1193 ◽  
Author(s):  
Zuzana Bukvisova ◽  
Jaroslava Orsagova ◽  
David Topolanek ◽  
Petr Toman

This work analyses a two-terminal algorithm designed to locate unsymmetrical faults on 110 kV power transmission lines. The algorithm processes synchronized voltage and current data obtained from both ends of the protected transmission line and calculates the distance of the fault. It is based on decomposing the equivalent circuit into the positive-, negative- and zero-sequence components and finding the point where the output voltages of the right and the left side of the transmission line are equal. Compared to the conventional distance relay locator, the accuracy of this method is higher and less influenced by the fault resistance, the parallel-operated line effect and line asymmetry, as discussed in this work. It is, however, very sensitive to the synchronization accuracy. The mathematical model of the power system was created in the PSCAD (Power Systems Computer Aided Design) environment and the computational algorithm was implemented in Mathematica software.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Oluleke O. Babayomi ◽  
Peter O. Oluseyi

This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults.


Sign in / Sign up

Export Citation Format

Share Document