scholarly journals A Novel User Classification Method for Femtocell Network by Using Affinity Propagation Algorithm and Artificial Neural Network

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Afaz Uddin Ahmed ◽  
Mohammad Tariqul Islam ◽  
Mahamod Ismail ◽  
Salehin Kibria ◽  
Haslina Arshad

An artificial neural network (ANN) and affinity propagation (AP) algorithm based user categorization technique is presented. The proposed algorithm is designed for closed access femtocell network. ANN is used for user classification process and AP algorithm is used to optimize the ANN training process. AP selects the best possible training samples for faster ANN training cycle. The users are distinguished by using the difference of received signal strength in a multielement femtocell device. A previously developed directive microstrip antenna is used to configure the femtocell device. Simulation results show that, for a particular house pattern, the categorization technique without AP algorithm takes 5 indoor users and 10 outdoor users to attain an error-free operation. While integrating AP algorithm with ANN, the system takes 60% less training samples reducing the training time up to 50%. This procedure makes the femtocell more effective for closed access operation.

2022 ◽  
pp. 400-426
Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


2021 ◽  
Vol 11 (19) ◽  
pp. 8943
Author(s):  
Rudy Alexis Guejia Burbano ◽  
Giovanni Petrone ◽  
Patrizio Manganiello

In this paper, an artificial neural network (ANN) is used for isolating faults and degradation phenomena occurring in photovoltaic (PV) panels. In the literature, it is well known that the values of the single diode model (SDM) associated to the PV source are strictly related to degradation phenomena and their variation is an indicator of panel degradation. On the other hand, the values of parameters that allow to identify the degraded conditions are not known a priori because they can be different from panel to panel and are strongly dependent on environmental conditions, PV technology and the manufacturing process. For these reasons, to correctly detect the presence of degradation, the effect of environmental conditions and fabrication processes must be properly filtered out. The approach proposed in this paper exploits the intrinsic capability of ANN to map in its architecture two effects: (1) the non-linear relations existing among the SDM parameters and the environmental conditions, and (2) the effect of the degradation phenomena on the I-V curves and, consequently, on the SDM parameters. The ANN architecture is composed of two stages that are trained separately: one for predicting the SDM parameters under the hypothesis of healthy operation and the other one for degraded condition. The variation of each parameter, calculated as the difference of the output of the two ANN stages, will give a direct identification of the type of degradation that is occurring on the PV panel. The method was initially tested by using the experimental I-V curves provided by the NREL database, where the degradation was introduced artificially, later tested by using some degraded experimental I-V curves.


Author(s):  
Srinivasa P. Pai ◽  
Nagabhushana T. N.

Tool wear is a major factor that affects the productivity of any machining operation and needs to be controlled for achieving automation. It affects the surface finish, tolerances, dimensions of the workpiece, increases machine down time, and sometimes performance of machine tool and personnel are affected. This chapter deals with the application of artificial neural network (ANN) models for tool condition monitoring (TCM) in milling operations. The data required for training and testing the models studied and developed are from live experiments conducted in a machine shop on a widely used steel, medium carbon steel (En 8) using uncoated carbide inserts. Acoustic emission data and surface roughness data has been used in model development. The goal is for developing an optimal ANN model, in terms of compact architecture, least training time, and its ability to generalize well on unseen (test) data. Growing cell structures (GCS) network has been found to achieve these requirements.


Author(s):  
Khairell Khazin Kaman ◽  
Mahdi Faramarzi ◽  
Sallehuddin Ibrahim ◽  
Mohd Amri Md Yunus

<p> This paper discusses non-intrusive electrical energy monitoring (NIEM) system in an effort to minimize electrical energy wastages. To realize the system, an energy meter is used to measure the electrical consumption by electrical appliances. The obtained data were analyzed using a method called multilayer perceptron (MLP) technique of artificial neural network (ANN). The event detection was implemented to identify the type of loads and the power consumption of the load which were identified as fan and lamp. The switching ON and OFF output events of the loads were inputted to MLP in order to test the capability of MLP in classifying the type of loads. The data were divided to 70% for training, 15% for testing, and 15% for validation. The output of the MLP is either ‘1’ for fan or ‘0’ for lamp. In conclusion, MLP with five hidden neurons results obtained the lowest average training time with 2.699 seconds, a small number of epochs with 62 iterations, a min square error of 7.3872×10-5, and a high regression coefficient of 0.99050.</p>


2013 ◽  
Vol 535-536 ◽  
pp. 318-321
Author(s):  
Xia Jin ◽  
Shi Hong Lu

One-axle rotary shaping with the elastic medium (RSEM) is a kind of advanced sheet metal forming process. The research object is the springback of aluminous U-section. The orthogonal method is used to arrange the simulation experiments, the forming and springback of the workpiece are simulated successfully with the Finite Element Simulation software, and The main factors influenced the RSEM are analyzed. The simulation results are used as the training samples of the artificial neural network (ANN), and the ANN prediction model of RSEM process is set up. The prediction results would be tested with the experiment data, and only a little tolerance was existed between the two values. It demonstrated that the combination of orthogonal test, numerical simulation and neural network could effectively predict the springback of RSEM, the design efficiency of process parameters would be improved. It would guide the development of precision forming technology.


2020 ◽  
Author(s):  
Akiyo Chiba ◽  
Takashi Kudo ◽  
Reiko Ideguchi ◽  
Altay Myssaev ◽  
Seiji Koga ◽  
...  

Abstract Background: This study examined whether using an artificial neural network (ANN) helps beginners in diagnostic cardiac imaging to achieve similar results to experts when interpreting stress myocardial perfusion imaging (MPI).Methods: 138 patients underwent stress MPI with Tc-labeled agents. An expert and a beginner interpreted stress/rest MPI with or without the ANN and the results were compared. The myocardium was divided into 5 regions (the apex; septum; anterior; lateral, and inferior regions), and the degree of myocardial blood flow was evaluated from 0 to 4, and SSS, SRS, and SDS were calculated. The ANN effect, defined as the difference in each of these scores between with and without the ANN, was calculated to investigate the influence of ANN on the interpreters' performance. Results: The ANN effect was smaller for the expert than for the beginner. Conclusions: When interpreting MPI, beginners may achieve similar results to experts by using an ANN. Thus, interpreting MPI with ANN may be useful for beginners.


Author(s):  
A. Chiba ◽  
T. Kudo ◽  
R. Ideguchi ◽  
M. Altay ◽  
S. Koga ◽  
...  

AbstractThis study examined whether using an artificial neural network (ANN) helps beginners in diagnostic cardiac imaging to achieve similar results to experts when interpreting stress myocardial perfusion imaging (MPI). One hundred and thirty-eight patients underwent stress MPI with Tc-labeled agents. An expert and a beginner interpreted stress/rest MPI with or without the ANN and the results were compared. The myocardium was divided into 5 regions (the apex; septum; anterior; lateral, and inferior regions), and the defect score of myocardial blood flow was evaluated from 0 to 4, and SSS, SRS, and SDS were calculated. The ANN effect, defined as the difference in each of these scores between with and without the ANN, was calculated to investigate the influence of ANN on the interpreters' performance. We classified 2 groups (insignificant perfusion group and significant perfusion group) and compared them. In the same way, classified 2 groups (insignificant ischemia group and significant ischemia group) and compared them. Besides, we classified 2 groups (normal vessels group and multi-vessels group) and compared them. The ANN effect was smaller for the expert than for the beginner. Besides, the ANN effect for insignificant perfusion group, insignificant ischemia group and multi-vessels group were smaller for the expert than for the beginner. On the other hand, the ANN effect for significant perfusion group, significant ischemia group and normal vessels group were no significant. When interpreting MPI, beginners may achieve similar results to experts by using an ANN. Thus, interpreting MPI with ANN may be useful for beginners. Furthermore, when beginners interpret insignificant perfusion group, insignificant ischemia group and multi-vessel group, beginners may achieve similar results to experts by using an ANN.


2019 ◽  
Vol 130 ◽  
pp. 01022
Author(s):  
Pranoko Rivandi ◽  
Astuti Winda ◽  
Dewanto Satrio ◽  
Mahmud Iwan Solihin

Automated vehicle security system plays an important rule in nowadays advance automotive technology. One of the methods which can be applied for a security system is based on biometric identification system. Fingerprint recognition is one of the biometric systems that can be applied to the security system. In this work, fingerprint recognition system to start the motorcycle engine is developed. The fingerprint of the owner and other authorized persons will be stored into the database, then while the time of starting the engine of the vehicle, the fingerprint will be validated with the database. The minutiae extraction method is applied to find the difference of fingerprint each other after turn the image into grayscale and thinning. After the extraction, the next step is finding the ridge edge and bifurcation. The result of the image will be used as input to the Artificial Neural Network (ANN) to recognize authorized person only. The experiment of fingerprint recognition system shows that automatic start-stop engine using fingerprint recognition system based minutiae extraction and Artificial Neural Network (ANN) has accuracy 100 % and 100 %, respectively.


2020 ◽  
Vol 158 (3) ◽  
pp. 185-193
Author(s):  
Ali Mohammadi Torkashvand ◽  
Afsoon Ahmadipour ◽  
Amin Mousavi Khaneghah

AbstractThere is a fundamental concern regarding the prediction of kiwifruit yield based on the concentration of nutrients in the leaf (2–3 months before fruits harvesting). For this purpose, the current study was designed to employ an artificial neural network (ANN) to evaluate the kiwi yield of Hayward cultivar. In this regard, 31 kiwi orchards (6–7 years old) in different parts of Rudsar, Guilan Province, Iran, with 101 plots (three trees in every plot) were selected. The complete leaves of branches with fruits were harvested, and the concentration of nitrogen, potassium, calcium, and magnesium measured. After fruit harvesting in late November, the fruit yield of each plot was evaluated along with the fresh and dry weights of the fruit. The ANN analyses were carried out using a multi-layer perceptron with the Langburge-Marquardt training algorithm. Using calcium (Ca) as input data (Ca-model) was more accurate than using nitrogen (N-model). The maximum R2 and the lowest root mean square error was obtained when all nutrients and related ratios were considered as input variables. Since the difference between the proposed model and the model fitted by the calcium variable (Ca-model) was only about 6%, the Ca-model is recommended.


Sign in / Sign up

Export Citation Format

Share Document