scholarly journals Reduction of Multidimensional Image Characteristics Based on Improved KICA

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jia Dongyao ◽  
Ai Yanke ◽  
Zou Shengxiong

The domestic and overseas studies of redundant multifeatures and noise in dimension reduction are insufficient, and the efficiency and accuracy are low. Dimensionality reduction and optimization of characteristic parameter model based on improved kernel independent component analysis are proposed in this paper; the independent primitives are obtained by KICA (kernel independent component analysis) algorithm to construct an independent group subspace, while using 2DPCA (2D principal component analysis) algorithm to complete the second order related to data and further reduce the dimension in the above method. Meanwhile, the optimization effect evaluation method based on Amari error and average correlation degree is presented in this paper. Comparative simulation experiments show that the Amari error is less than 6%, the average correlation degree is stable at 97% or more, and the parameter optimization method can effectively reduce the dimension of multidimensional characteristic parameters.

2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Carlos G. Urzúa-Traslaviña ◽  
Vincent C. Leeuwenburgh ◽  
Arkajyoti Bhattacharya ◽  
Stefan Loipfinger ◽  
Marcel A. T. M. van Vugt ◽  
...  

AbstractThe interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal.


2020 ◽  
Vol 10 (20) ◽  
pp. 7027
Author(s):  
Kookhyun Yoo ◽  
Un-Chang Jeong

This study proposed a contribution evaluation through the independent component analysis (ICA) method. The necessity of applying ICA to the evaluation of contribution was investigated through numerical simulation. Moreover, the estimation of the number of input sources, the labeling of signals, and the restoration of the signal amplitude were considered to perform the ICA-based coherence evaluation. The contribution evaluation was performed using the coherence evaluation method and by applying the established ICA-based coherence evaluation method to the seat rattle noise of the vehicle. According to the result of the evaluation, with the coherence evaluation technique it was difficult to calculate the contribution in identifying noise sources that overlap in both spatially and in frequency, because it was challenging to distinguish between the two measured signals. By contrast, the ICA-based coherence evaluation was able to restore the original source and investigate the contribution.


Sign in / Sign up

Export Citation Format

Share Document