scholarly journals Domain Adaptation for Pedestrian Detection Based on Prediction Consistency

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Yu Li-ping ◽  
Tang Huan-ling ◽  
An Zhi-yong

Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene.

2020 ◽  
Vol 34 (05) ◽  
pp. 7830-7838 ◽  
Author(s):  
Han Guo ◽  
Ramakanth Pasunuru ◽  
Mohit Bansal

Domain adaptation performance of a learning algorithm on a target domain is a function of its source domain error and a divergence measure between the data distribution of these two domains. We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates. We first conduct analysis experiments to show which of these distance measures can best differentiate samples from same versus different domains, and are correlated with empirical results. Next, we develop a DistanceNet model which uses these distance measures, or a mixture of these distance measures, as an additional loss function to be minimized jointly with the task's loss function, so as to achieve better unsupervised domain adaptation. Finally, we extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains and allow the model to learn an optimal trajectory and mixture of domains for transfer to the low-resource target domain. We conduct experiments on popular sentiment analysis datasets with several diverse domains and show that our DistanceNet model, as well as its dynamic bandit variant, can outperform competitive baselines in the context of unsupervised domain adaptation.


Author(s):  
Wenhao Jiang ◽  
Cheng Deng ◽  
Wei Liu ◽  
Feiping Nie ◽  
Fu-lai Chung ◽  
...  

Domain adaptation problems arise in a variety of applications, where a training dataset from the source domain and a test dataset from the target domain typically follow different distributions. The primary difficulty in designing effective learning models to solve such problems lies in how to bridge the gap between the source and target distributions. In this paper, we provide comprehensive analysis of feature learning algorithms used in conjunction with linear classifiers for domain adaptation. Our analysis shows that in order to achieve good adaptation performance, the second moments of the source domain distribution and target domain distribution should be similar. Based on our new analysis, a novel extremely easy feature learning algorithm for domain adaptation is proposed. Furthermore, our algorithm is extended by leveraging multiple layers, leading to another feature learning algorithm. We evaluate the effectiveness of the proposed algorithms in terms of domain adaptation tasks on Amazon review and spam datasets from the ECML/PKDD 2006 discovery challenge.


2018 ◽  
Vol 27 (06) ◽  
pp. 1850022
Author(s):  
Karl R. Weiss ◽  
Taghi M. Khoshkoftaar

A transfer learning environment is characterized by not having sufficient labeled training data from the domain of interest (target domain) to build a high-performing machine learner. Transfer learning algorithms use labeled data from an alternate domain (source domain), that is similar to the target domain, to build high-performing learners. The design of a transfer learning algorithm is typically comprised of a domain adaptation step following by a learning step. The domain adaptation step attempts to align the distribution differences between the source domain and the target domain. Then, the aligned data from the domain adaptation step is used in the learning step, which is typically implemented with a traditional machine learning algorithm. Our research studies the impact of the learning step on the performance of various transfer learning algorithms. In our experiment, we use five unique domain adaptation methods coupled with seven different traditional machine learning methods to create 35 different transfer learning algorithms. We perform comparative performance analyses of the 35 transfer learning algorithms, along with the seven stand-alone traditional machine learning methods. This research will aid machine learning practitioners in the algorithm selection process for a transfer learning environment in the absence of reliable validation techniques.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Haijun Zhang ◽  
Bo Zhang ◽  
Zhoujun Li ◽  
Guicheng Shen ◽  
Liping Tian

In a real e-commerce website, usually only a small number of users will give ratings to the items they purchased, and this can lead to the very sparse user-item rating data. The data sparsity issue will greatly limit the recommendation performance of most recommendation algorithms. However, a user may register accounts in many e-commerce websites. If such users’ historical purchasing data on these websites can be integrated, the recommendation performance could be improved. But it is difficult to align the users and items between these websites, and thus how to effectively borrow the users’ rating data of one website (source domain) to help improve the recommendation performance of another website (target domain) is very challenging. To this end, this paper extended the traditional one-dimensional psychometrics model to multidimension. The extended model can effectively capture users’ multiple interests. Based on this multidimensional psychometrics model, we further propose a novel transfer learning algorithm. It can effectively transfer users’ rating preferences from the source domain to the target domain. Experimental results show that the proposed method can significantly improve the recommendation performance.


Information ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 224
Author(s):  
Hui Tao ◽  
Jun He ◽  
Quanjie Cao ◽  
Lei Zhang

Domain adaptation is critical to transfer the invaluable source domain knowledge to the target domain. In this paper, for a particular visual attention model, saying hard attention, we consider to adapt the learned hard attention to the unlabeled target domain. To tackle this kind of hard attention adaptation, a novel adversarial reward strategy is proposed to train the policy of the target domain agent. In this adversarial training framework, the target domain agent competes with the discriminator which takes the attention features generated from the both domain agents as input and tries its best to distinguish them, and thus the target domain policy is learned to align the local attention feature to its source domain counterpart. We evaluated our model on the benchmarks of the cross-domain tasks, such as the centered digits datasets and the enlarged non-centered digits datasets. The experimental results show that our model outperforms the ADDA and other existing methods.


Author(s):  
My Kieu ◽  
Andrew D. Bagdanov ◽  
Marco Bertini

Pedestrian detection is a canonical problem for safety and security applications, and it remains a challenging problem due to the highly variable lighting conditions in which pedestrians must be detected. This article investigates several domain adaptation approaches to adapt RGB-trained detectors to the thermal domain. Building on our earlier work on domain adaptation for privacy-preserving pedestrian detection, we conducted an extensive experimental evaluation comparing top-down and bottom-up domain adaptation and also propose two new bottom-up domain adaptation strategies. For top-down domain adaptation, we leverage a detector pre-trained on RGB imagery and efficiently adapt it to perform pedestrian detection in the thermal domain. Our bottom-up domain adaptation approaches include two steps: first, training an adapter segment corresponding to initial layers of the RGB-trained detector adapts to the new input distribution; then, we reconnect the adapter segment to the original RGB-trained detector for final adaptation with a top-down loss. To the best of our knowledge, our bottom-up domain adaptation approaches outperform the best-performing single-modality pedestrian detection results on KAIST and outperform the state of the art on FLIR.


2021 ◽  
pp. 1-7
Author(s):  
Rong Chen ◽  
Chongguang Ren

Domain adaptation aims to solve the problems of lacking labels. Most existing works of domain adaptation mainly focus on aligning the feature distributions between the source and target domain. However, in the field of Natural Language Processing, some of the words in different domains convey different sentiment. Thus not all features of the source domain should be transferred, and it would cause negative transfer when aligning the untransferable features. To address this issue, we propose a Correlation Alignment with Attention mechanism for unsupervised Domain Adaptation (CAADA) model. In the model, an attention mechanism is introduced into the transfer process for domain adaptation, which can capture the positively transferable features in source and target domain. Moreover, the CORrelation ALignment (CORAL) loss is utilized to minimize the domain discrepancy by aligning the second-order statistics of the positively transferable features extracted by the attention mechanism. Extensive experiments on the Amazon review dataset demonstrate the effectiveness of CAADA method.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Author(s):  
Hang Li ◽  
Xi Chen ◽  
Ju Wang ◽  
Di Wu ◽  
Xue Liu

WiFi-based Device-free Passive (DfP) indoor localization systems liberate their users from carrying dedicated sensors or smartphones, and thus provide a non-intrusive and pleasant experience. Although existing fingerprint-based systems achieve sub-meter-level localization accuracy by training location classifiers/regressors on WiFi signal fingerprints, they are usually vulnerable to small variations in an environment. A daily change, e.g., displacement of a chair, may cause a big inconsistency between the recorded fingerprints and the real-time signals, leading to significant localization errors. In this paper, we introduce a Domain Adaptation WiFi (DAFI) localization approach to address the problem. DAFI formulates this fingerprint inconsistency issue as a domain adaptation problem, where the original environment is the source domain and the changed environment is the target domain. Directly applying existing domain adaptation methods to our specific problem is challenging, since it is generally hard to distinguish the variations in the different WiFi domains (i.e., signal changes caused by different environmental variations). DAFI embraces the following techniques to tackle this challenge. 1) DAFI aligns both marginal and conditional distributions of features in different domains. 2) Inside the target domain, DAFI squeezes the marginal distribution of every class to be more concentrated at its center. 3) Between two domains, DAFI conducts fine-grained alignment by forcing every target-domain class to better align with its source-domain counterpart. By doing these, DAFI outperforms the state of the art by up to 14.2% in real-world experiments.


Author(s):  
Renjun Xu ◽  
Pelen Liu ◽  
Yin Zhang ◽  
Fang Cai ◽  
Jindong Wang ◽  
...  

Domain adaptation (DA) has achieved a resounding success to learn a good classifier by leveraging labeled data from a source domain to adapt to an unlabeled target domain. However, in a general setting when the target domain contains classes that are never observed in the source domain, namely in Open Set Domain Adaptation (OSDA), existing DA methods failed to work because of the interference of the extra unknown classes. This is a much more challenging problem, since it can easily result in negative transfer due to the mismatch between the unknown and known classes. Existing researches are susceptible to misclassification when target domain unknown samples in the feature space distributed near the decision boundary learned from the labeled source domain. To overcome this, we propose Joint Partial Optimal Transport (JPOT), fully utilizing information of not only the labeled source domain but also the discriminative representation of unknown class in the target domain. The proposed joint discriminative prototypical compactness loss can not only achieve intra-class compactness and inter-class separability, but also estimate the mean and variance of the unknown class through backpropagation, which remains intractable for previous methods due to the blindness about the structure of the unknown classes. To our best knowledge, this is the first optimal transport model for OSDA. Extensive experiments demonstrate that our proposed model can significantly boost the performance of open set domain adaptation on standard DA datasets.


Sign in / Sign up

Export Citation Format

Share Document