scholarly journals Chaotic Extension Neural Network-Based Fault Diagnosis Method for Solar Photovoltaic Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kuo-Nan Yu ◽  
Her-Terng Yau ◽  
Jian-Yu Li

At present, the solar photovoltaic system is extensively used. However, once a fault occurs, it is inspected manually, which is not economical. In order to remedy the defect of unavailable fault diagnosis at any irradiance and temperature in the literature with chaos synchronization based intelligent fault diagnosis for photovoltaic systems proposed by Hsieh et al., this study proposed a chaotic extension fault diagnosis method combined with error back propagation neural network to overcome this problem. It used the nn toolbox of matlab 2010 for simulation and comparison, measured current irradiance and temperature, and used the maximum power point tracking (MPPT) for chaotic extraction of eigenvalue. The range of extension field was determined by neural network. Finally, the voltage eigenvalue obtained from current temperature and irradiance was used for the fault diagnosis. Comparing the diagnostic rates with the results by Hsieh et al., this scheme can obtain better diagnostic rates when the irradiances or the temperatures are changed.

2012 ◽  
Vol 538-541 ◽  
pp. 1956-1961 ◽  
Author(s):  
Jin Min Zhang ◽  
Yin Hua Huang ◽  
Si Ming Wang

Abstract. In order to diagnose the fault of rolling bearing by the vibration signal, a new method of fault diagnosis based on weighted fusion and BP (Back Propagation) neural network was put forward. At first, the vibration signal from the sensors was wave filtered through the method of correlation function, then the fused signal was obtained by the classical adaptive weighted fusion method, the multi-type characteristics parameters was to be as a neural network input. Finally, the fault diagnosis of rolling bearing was realized by the BP neural network, and the results show that the multi-sensor information fusion fault diagnosis method can be proved effectively to achieve the fault diagnosis of rolling bearing.


2011 ◽  
Vol 66-68 ◽  
pp. 1315-1319 ◽  
Author(s):  
Xin Min Dong ◽  
Jie Han ◽  
Wang Shen Hao

The rotor motion and the information fusion of single section were discussed; the fault diagnosis method for rotary machinery based on the full information fusion of two sections was put forward, and the back propagation neural network model was established. Engineering practice indicated that the fault diagnosis accuracy based on the information fusion of two sections was higher than that based on the information fusion of single section.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Farzad Sedaghati ◽  
Ali Nahavandi ◽  
Mohammad Ali Badamchizadeh ◽  
Sehraneh Ghaemi ◽  
Mehdi Abedinpour Fallah

In this paper, using artificial neural network (ANN) for tracking of maximum power point is discussed. Error back propagation method is used in order to train neural network. Neural network has advantages of fast and precisely tracking of maximum power point. In this method neural network is used to specify the reference voltage of maximum power point under different atmospheric conditions. By properly controling of dc-dc boost converter, tracking of maximum power point is feasible. To verify theory analysis, simulation result is obtained by using MATLAB/SIMULINK.


2021 ◽  
Author(s):  
Fangyuan Yan ◽  
Juanli Li ◽  
Dong Miao ◽  
Qi Cao

Abstract A reliable braking system is an important guarantee for safe operation of mine hoist. In order to make full use of the monitoring data in the operation process of mine hoist, identify the operation status of the hoist, and further carry out fault diagnosis on it, the deep learning method was introduced into the fault diagnosis of the hoist, and a fault diagnosis method of hoist braking system based on convolution neural network has been proposed. Firstly, the working principle and fault mechanism of disc brake and its hydraulic station in hoist braking system are analyzed, and the monitoring parameters of this study are determined; then, based on massive monitoring data, the convolutional neural networks (CNN) is established, the one-dimensional signal collected by the sensor is transformed into two-dimensional image for coding, the neural network is trained by gradient descent method, and the network structure parameters are modified according to the training results. Finally, the fault diagnosis model is compared and verified by using the sample set based on the traditional back propagation neural network (BP) and CNN. The results show that the accuracy of CNN is higher than that of BP, and the accuracy rate can reach 99.375% after reducing the involvement between samples. This method can make full use of the monitoring data for diagnosis, without subjective intervention of experts, and improve the accuracy of diagnosis.


Sign in / Sign up

Export Citation Format

Share Document