scholarly journals Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
G. Abbas

Few years ago, Setare (2006) has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.

2002 ◽  
Vol 17 (32) ◽  
pp. 2089-2094 ◽  
Author(s):  
M. R. SETARE

In this paper we discuss the question of whether the entropy of cosmological horizon in topological Reissner–Nordström–de Sitter spaces can be described by the Cardy–Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any dimension. Furthermore, we find that the entropy of black hole horizon can also be rewritten in terms of the Cardy–Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Our result is in favour of the dS/CFT correspondence.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
M. Sharif ◽  
Rabia Saleem

We check the consistency of the entropy of Bardeen and Ayón Beato-García-Bronnikov black holes with the entropy of particular conformal field theory via Cardy-Verlinde formula. We also compute the first-order semiclassical corrections of this formula due to self-gravitational effects by modifying pure extensive and Casimir energy in the context of Keski-Vakkuri, Kraus and Wilczek analysis. It is concluded that the correction term remains positive for both black holes, which leads to the violation of the holographic bound.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2003 ◽  
Vol 18 (25) ◽  
pp. 4497-4591 ◽  
Author(s):  
MICHAEL A. I. FLOHR

These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. The two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.


2014 ◽  
Vol 92 (12) ◽  
pp. 1638-1642 ◽  
Author(s):  
J. Sadeghi ◽  
B. Pourhassan ◽  
F. Rahimi

We consider a charged black hole with a scalar field that is coupled to gravity in (2 + 1)-dimensions. We compute the logarithmic corrections to the corresponding system using two approaches. In the first method we take advantage of thermodynamic properties. In the second method we use the metric function that is suggested by conformal field theory. Finally, we compare the results of the two approaches.


Sign in / Sign up

Export Citation Format

Share Document