scholarly journals Next Generation Delivery System for Proteins and Genes of Therapeutic Purpose: Why and How?

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Ashish Ranjan Sharma ◽  
Shyamal Kumar Kundu ◽  
Ju-Suk Nam ◽  
Garima Sharma ◽  
C. George Priya Doss ◽  
...  

Proteins and genes of therapeutic interests in conjunction with different delivery systems are growing towards new heights. “Next generation delivery systems” may provide more efficient platform for delivery of proteins and genes. In the present review, snapshots about the benefits of proteins or gene therapy, general procedures for therapeutic protein or gene delivery system, and different next generation delivery system such as liposome, PEGylation, HESylation, and nanoparticle based delivery have been depicted with their detailed explanation.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Shyamal Kumar Kundu ◽  
Ashish Ranjan Sharma ◽  
Sang-Soo Lee ◽  
Garima Sharma ◽  
C. George Priya Doss ◽  
...  

Advancement in the gene delivery system have resulted in clinical successes in gene therapy for patients with several genetic diseases, such as immunodeficiency diseases, X-linked adrenoleukodystrophy (X-ALD) blindness, thalassemia, and many more. Among various delivery systems, liposomal mediated gene delivery route is offering great promises for gene therapy. This review is an attempt to depict a portrait about the polymer based liposomal gene delivery systems and their future applications. Herein, we have discussed in detail the characteristics of liposome, importance of polymer for liposome formulation, gene delivery, and future direction of liposome based gene delivery as a whole.


2017 ◽  
Vol 29 (04) ◽  
pp. 1750027 ◽  
Author(s):  
Ko-Chung Yen ◽  
I-Hua Chen ◽  
Feng-Huei Lin

A major aim of gene therapy is the efficient and specific delivery of therapeutic gene into the desired target tissues. Development of reliable vectors is a major challenge in gene therapy. The aim of this study is to develop calcium phosphate nanoparticles as novel non-viral vectors for the gene delivery system. Calcium phosphate nanoparticles were prepared by water-in-oil microemulsion method with a water to surfactant molar ratio, Wo [Formula: see text] 2–10. This paper studies the design and synthesis of ultra-low size, highly monodispersed DNA doped calcium phosphate nanoparticles of size around 100[Formula: see text]nm in diameter. The structure of DNA-calcium phosphate nanocomplex observed by TEM was displayed as a shell-like structure. This study used pEGFP as a reporter gene. The encapsulating efficiency to encapsulate DNA inside the nanoparticles was greater than 80%. In the MTT test, both calcium phosphate nanoparticles and DNA-calcium phosphate nanocomplex have no negative effect for 293T cells. By gel electrophoresis of free and entrapped pEGFP DNA, the DNA encapsulated inside the nanoparticles was protected from the external DNaseI environment. In vitro transfection studies in 293T cell-line, the DNA-calcium phosphate nanocomplex could be used safely to transfer the encapsulated DNA into the 293T cells and expression green fluorescent protein. The characteristic of DNA-calcium phosphate nanocomplex to deliver DNA belongs to slow release. The property of DNA-calcium phosphate nanocomplex was fit in the requirement of non-viral vectors for the gene delivery system.


2006 ◽  
Vol 26 (6) ◽  
pp. 633-640 ◽  
Author(s):  
Masanobu Miyazaki ◽  
Yoko Obata ◽  
Katsushige Abe ◽  
Akira Furusu ◽  
Takehiko Koji ◽  
...  

In peritoneal dialysis, loss of peritoneal function is a major factor in treatment failure. The alterations in peritoneal function are related to structural changes in the peritoneal membrane, including peritoneal sclerosis with increased extracellular matrix. Although peritoneal sclerosis is considered reversible to some extent through peritoneal rest, which improves peritoneal function and facilitates morphological changes, there has been no therapeutic intervention and no drug against the development and progression of peritoneal sclerosis. Using recent biotechnological advances in genetic engineering, a strategy based on genetic modification of the peritoneal membrane could be a potential therapeutic maneuver against peritoneal sclerosis and peritoneal membrane failure. Before this gene therapy may be applied clinically, a safe and effective gene delivery system as well as the selection of a gene therapy method must be established. There are presently two kinds of gene transfer vectors: viral and nonviral. Viral vectors are used mainly as a gene delivery system in the field of continuous ambulatory peritoneal dialysis research; however, they have several problems such as immunogenicity and toxicity. On the other hand, nonviral vectors have several advantages over viral vectors. We review here gene transfer using nonviral vector systems in the peritoneum: electroporation, liposomes, and cationized gelatin microspheres. In the field of peritoneal dialysis, gene therapy research using nonviral vectors is presently limited. Improvement in delivery methods together with an intelligent design of targeted genes has brought about large degrees of enhancement in the efficiency, specificity, and temporal control of nonviral vectors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5482-5482
Author(s):  
Tomoko Tanaka ◽  
Ryo Kurita ◽  
Kashiya Takasugi ◽  
Takafumi Nakamura ◽  
Makoto Inoue ◽  
...  

Abstract Extensive monocytes extravasation is seen in infection sites, inflamed tissue and tumor tissues and exhibit a tissue-specific range of functions including phagocytosis, antigen presentation to T cells, and the release of a wide array of cytokines, chemokines, enzymes and nitrogen species. As monocytes have natural tropism to such tissues in each disease condition, these cells can be used as novel gene delivery system to cure the condition. On the other hand, as monocytes are quiescent cells, available gene transfer vectors are limited. Sendai virus (SeV) is a negative-strand RNA virus and has recently been used for the gene therapy vectors, SeV vectors (SeVV), for somatic gene therapy. This vector does not have potential of stable transformation of target cells because they generate no DNA intermediates and therefore are unable to integrate. Also, SeVV has been shown to ensure efficient expression of foreign genes in various types of tissues and can be used for gene transfer into monocytes. We first of all studied the gene transduction efficiency of SeVV into human peripheral blood CD 14 positive monocytes using GFP gene as a marker. About 82% of monocytes became GFP positive, whereas only 23% of lymphocytes and 1.8% of granulocytes became positive. The transduction efficiency was peaked at M.O.I.=1. The expression level was at least preserved for 24 hours in vitro. To do the in vivo preclinical experiments, we also transduced cDNA of GFP and GDNF (glial cell line-derived neurotrophic factor) into the peripheral monocytes of Macaca fascicularis monkey and high level expression of these genes were obtained. In vitro monocyte function after gene transduction are now under investigation. SeVV is considered to be promising gene transfer vector for primate monocytes.


Sign in / Sign up

Export Citation Format

Share Document