scholarly journals Dietary Hyaluronic Acid Migrates into the Skin of Rats

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Mariko Oe ◽  
Koichi Mitsugi ◽  
Wataru Odanaka ◽  
Hideto Yoshida ◽  
Ryosuke Matsuoka ◽  
...  

Hyaluronic acid is a constituent of the skin and helps to maintain hydration. The oral intake of hyaluronic acid increases water in the horny layer as demonstrated by human trials, but in vivo kinetics has not been shown. This study confirmed the absorption, migration, and excretion of14C-labeled hyaluronic acid (14C-hyaluronic acid).14C-hyaluronic acid was orally or intravenously administered to male SD rats aged 7 to 8 weeks. Plasma radioactivity after oral administration showed the highest level 8 hours after administration, and orally administered14C-hyaluronic acid was found in the blood. Approximately 90% of14C-hyaluronic acid was absorbed from the digestive tract and used as an energy source or a structural constituent of tissues based on tests of the urine, feces, expired air, and cadaver up to 168 hours (one week) after administration. The autoradiographic results suggested that radioactivity was distributed systematically and then reduced over time. The radioactivity was higher in the skin than in the blood at 24 and 96 hours after administration. The results show the possibility that orally administered hyaluronic acid migrated into the skin. No excessive accumulation was observed and more than 90% of the hyaluronic acid was excreted in expired air or urine.

2016 ◽  
Author(s):  
Annita Louloupi ◽  
Evgenia Ntini ◽  
Julia Liz ◽  
Ulf Andersson Ørom

AbstractmiRNAs are small regulatory RNAs involved in the regulation of translation of target transcripts. miRNA biogenesis is a multi-step process starting with the cleavage of the primary miRNA transcript in the nucleus by the Microprocessor complex. Endogenous processing of pri-miRNAs is challenging to study and the in vivo kinetics of this process is not known. Here, we present a method for determining the processing kinetics of pri-miRNAs within intact cells over time using a pulse-chase approach to obtain nascent RNA within a 1-hour window after labeling with bromouridine. We show, that pri-miRNAs exhibit different processing kinetics ranging from fast over intermediate to slow processing and provide evidence that pri-miRNA processing can occur both co-transcriptionally and post-transcriptionally.


2018 ◽  
Vol 142 (1) ◽  
pp. 112-121 ◽  
Author(s):  
Masato Mochizuki ◽  
Noriyuki Aoi ◽  
Koichi Gonda ◽  
Shinichi Hirabayashi ◽  
Yuzo Komuro

2019 ◽  
Vol 143 (3) ◽  
pp. 659e ◽  
Author(s):  
Andrea Sisti ◽  
Daniel Boczar ◽  
David J. Restrepo ◽  
Giuseppe Nisi ◽  
Antonio Jorge Forte

Author(s):  
Andrea Sisti ◽  
Daniel Boczar ◽  
David Restrepo ◽  
Giuseppe Nisi ◽  
Antonio Jorge Forte

1993 ◽  
Vol 69 (01) ◽  
pp. 021-024 ◽  
Author(s):  
Shawn Tinlin ◽  
Sandra Webster ◽  
Alan R Giles

SummaryThe development of inhibitors to factor VIII in patients with haemophilia A remains as a serious complication of replacement therapy. An apparently analogous condition has been described in a canine model of haemophilia A (Giles et al., Blood 1984; 63:451). These animals and their relatives have now been followed for 10 years. The observation that the propensity for inhibitor development was not related to the ancestral factor VIII gene has been confirmed by the demonstration of vertical transmission through three generations of the segment of the family related to a normal (non-carrier) female that was introduced for breeding purposes. Haemophilic animals unrelated to this animal have not developed functionally significant factor VIII inhibitors despite intensive factor VIII replacement. Two animals have shown occasional laboratory evidence of factor VIII inhibition but this has not been translated into clinical significant inhibition in vivo as assessed by clinical response and F.VIII recovery and survival characteristics. Substantial heterogeneity of inhibitor expression both in vitro and in vivo has been observed between animals and in individual animals over time. Spontaneous loss of inhibitors has been observed without any therapies designed to induce tolerance, etc., being instituted. There is also phenotypic evidence of polyclonality of the immune response with variable expression over time in a given animal. These observations may have relevance to the human condition both in determining the pathogenetic factors involved in this condition and in highlighting the heterogeneity of its expression which suggests the need for caution in the interpretation of the outcome of interventions designed to modulate inhibitor activity.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2200
Author(s):  
Ruben X. G. Silva ◽  
Paulo Cartaxana ◽  
Ricardo Calado

Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 838
Author(s):  
Katharina A. Sterenczak ◽  
Nadine Stache ◽  
Sebastian Bohn ◽  
Stephan Allgeier ◽  
Bernd Köhler ◽  
...  

During breast cancer therapy, paclitaxel and trastuzumab are both associated with adverse effects such as chemotherapy-induced peripheral neuropathy and other systemic side effects including ocular complications. Corneal nerves are considered part of the peripheral nervous system and can be imaged non-invasively by confocal laser scanning microscopy (CLSM) on the cellular level. Thus, in vivo CLSM imaging of structures of the corneal subbasal nerve plexus (SNP) such as sensory nerves or dendritic cells (DCs) can be a powerful tool for the assessment of corneal complications during cancer treatment. During the present study, the SNP of a breast cancer patient was analyzed over time by using large-scale in vivo CLSM in the course of paclitaxel and trastuzumab therapy. The same corneal regions could be re-identified over time. While the subbasal nerve morphology did not alter significantly, a change in dendritic cell density and an additional local burst within the first 11 weeks of therapy was detected, indicating treatment-mediated corneal inflammatory processes. Ocular structures such as nerves and dendritic cells could represent useful biomarkers for the assessment of ocular adverse effects during cancer therapy and their management, leading to a better visual prognosis.


Acta Tropica ◽  
2021 ◽  
pp. 106048
Author(s):  
Qiu-Fu Yu ◽  
Jie-Ying Zhang ◽  
Meng-Tao Sun ◽  
Man-Man Gu ◽  
Hui-Ying Zou ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wei Zhang ◽  
Guoyu Yin ◽  
Heping Zhao ◽  
Hanzhi Ling ◽  
Zhen Xie ◽  
...  

AbstractIn inflamed joints, enhanced hyaluronic acid (HA) degradation is closely related to the pathogenesis of rheumatoid arthritis (RA). KIAA1199 has been identified as a hyaladherin that mediates the intracellular degradation of HA, but its extracellular function remains unclear. In this study, we found that the serum and synovial levels of secreted KIAA1199 (sKIAA1199) and low-molecular-weight HA (LMW-HA, MW < 100 kDa) in RA patients were significantly increased, and the positive correlation between them was shown for the first time. Of note, treatment with anti-KIAA1199 mAb effectively alleviated the severity of arthritis and reduced serum LMW-HA levels and cytokine secretion in collagen-induced arthritis (CIA) mice. In vitro, sKIAA1199 was shown to mediate exogenous HA degradation by attaching to the cell membrane of RA fibroblast-like synoviosytes (RA FLS). Furthermore, the HA-degrading activity of sKIAA1199 depended largely on its adhesion to the membrane, which was achieved by its G8 domain binding to ANXA1. In vivo, kiaa1199-KO mice exhibited greater resistance to collagen-induced arthritis. Interestingly, this resistance could be partially reversed by intra-articular injection of vectors encoding full-length KIAA1199 instead of G8-deleted KIAA119 mutant, which further confirmed the indispensable role of G8 domain in KIAA1199 involvement in RA pathological processes. Mechanically, the activation of NF-κB by interleukin-6 (IL-6) through PI3K/Akt signaling is suggested to be the main pathway to induce KIAA1199 expression in RA FLS. In conclusion, our study supported the contribution of sKIAA1199 to RA pathogenesis, providing a new therapeutic target for RA by blocking sKIAA1199-mediated HA degradation.


Sign in / Sign up

Export Citation Format

Share Document