Enhanced Both in vitro and in vivo Kinetics by SLNs Induced Transdermal System of Furosemide: A Novel Approach

2018 ◽  
Vol 11 (3) ◽  
pp. 187-197
Author(s):  
Revathi Mannam ◽  
Indira M. Yallamalli
2021 ◽  
Vol 65 (9) ◽  
pp. 2170020
Author(s):  
Jing Jin ◽  
Albertus Spenkelink ◽  
Karsten Beekmann ◽  
Marta Baccaro ◽  
Fuguo Xing ◽  
...  

Author(s):  
Dan Song ◽  
Ming Guo ◽  
Shuai Xu ◽  
Xiaotian Song ◽  
Bin Bai ◽  
...  

Abstract Background Pseudouridine synthase (PUS) 7 is a member of the PUS family that catalyses pseudouridine formation. It has been shown to be involved in intellectual development and haematological malignancies. Nevertheless, the role and the underlying molecular mechanisms of PUS7 in solid tumours, such as colorectal cancer (CRC), remain unexplored. This study elucidated, for the first time, the role of PUS7 in CRC cell metastasis and the underlying mechanisms. Methods We conducted immunohistochemistry, qPCR, and western blotting to quantify the expression of PUS7 in CRC tissues as well as cell lines. Besides, diverse in vivo and in vitro functional tests were employed to establish the function of PUS7 in CRC. RNA-seq and proteome profiling analysis were also applied to identify the targets of PUS7. PUS7-interacting proteins were further uncovered using immunoprecipitation and mass spectrometry. Results Overexpression of PUS7 was observed in CRC tissues and was linked to advanced clinical stages and shorter overall survival. PUS7 silencing effectively repressed CRC cell metastasis, while its upregulation promoted metastasis, independently of the PUS7 catalytic activity. LASP1 was identified as a downstream effector of PUS7. Forced LASP1 expression abolished the metastasis suppression triggered by PUS7 silencing. Furthermore, HSP90 was identified as a client protein of PUS7, associated with the increased PUS7 abundance in CRC. NMS-E973, a specific HSP90 inhibitor, also showed higher anti-metastatic activity when combined with PUS7 repression. Importantly, in line with these results, in human CRC tissues, the expression of PUS7 was positively linked to the expression of HSP90 and LASP1, and patients co-expressing HSP90/PUS7/LASP1 showed a worse prognosis. Conclusions The HSP90-dependent PUS7 upregulation promotes CRC cell metastasis via the regulation of LASP1. Thus, targeting the HSP90/PUS7/LASP1 axis may be a novel approach for the treatment of CRC.


2021 ◽  
Vol 7 (9) ◽  
pp. eabb0737
Author(s):  
Zhengnan Yang ◽  
Wei Wang ◽  
Linjie Zhao ◽  
Xin Wang ◽  
Ryan C. Gimple ◽  
...  

Ovarian cancer represents a highly lethal disease that poses a substantial burden for females, with four main molecular subtypes carrying distinct clinical outcomes. Here, we demonstrated that plasma cells, a subset of antibody-producing B cells, were enriched in the mesenchymal subtype of high-grade serous ovarian cancers (HGSCs). Plasma cell abundance correlated with the density of mesenchymal cells in clinical specimens of HGSCs. Coculture of nonmesenchymal ovarian cancer cells and plasma cells induced a mesenchymal phenotype of tumor cells in vitro and in vivo. Phenotypic switch was mediated by the transfer of plasma cell–derived exosomes containing miR-330-3p into nonmesenchymal ovarian cancer cells. Exosome-derived miR-330-3p increased expression of junctional adhesion molecule B in a noncanonical fashion. Depletion of plasma cells by bortezomib reversed the mesenchymal characteristics of ovarian cancer and inhibited in vivo tumor growth. Collectively, our work suggests targeting plasma cells may be a novel approach for ovarian cancer therapy.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii472-iii472
Author(s):  
Mubeen Mosaheb ◽  
Daniel Landi ◽  
Elena Dobrikova ◽  
Michael Brown ◽  
Yuanfan Yang ◽  
...  

Abstract BACKGROUND H3 K27M-mutant diffuse midline glioma (DMG) is invariably lethal. Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses, in particular, are uniquely tropic for dendritic cells (DC) and potently activate DC, inducing Th1-dominant cytokine profiles, CD8 T cell immunity, and enhanced epitope presentation. Thus, poliovirus is ideally suited for vectored delivery of signature tumor neoantigens, e.g. the H3 K27M feature of DMG. However, poliovirus vector design is inherently limited by genetic instability and the underlying neuropathogenicity of poliovirus. METHODS We created a genetically stable, polio:rhinovirus chimera vector devoid of neuropathogenicity and modified for stable expression of the HLA-A2 restricted H3.3 K27M antigen (RIPO (H3.3)). RESULTS RIPO(H3.3) infects, activates, and induces H3.3K27M antigen presentation in DCs in vitro. Given intramuscularly in vivo, RIPO(H3.3) recruits and activates DCs with Th1-dominant cytokine profiles, efficiently primes H3.3K27M-specific CD8 T cells, induces antigen-specific CD8 T cell migration to the tumor site, delays tumor growth, and enhances survival in murine tumor models. CONCLUSION This novel approach leverages the unique ability of polioviruses to activate DCs while simultaneously introducing the H3.3 K27M antigen. In this way, DCs are activated optimally in situ, while being simultaneously infected to express/present tumor antigen. RIPO(H3.3), given by intramuscular injection, will be evaluated in a clinical trial for children with H3 K27M-mutant diffuse midline glioma.


2016 ◽  
Vol 27 (22) ◽  
pp. 3616-3626 ◽  
Author(s):  
Tanumoy Saha ◽  
Isabel Rathmann ◽  
Abhiyan Viplav ◽  
Sadhana Panzade ◽  
Isabell Begemann ◽  
...  

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension–retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 555
Author(s):  
Marilena Vlachou ◽  
Vangelis Karalis

The aim of this study was to develop a new in vitro–in vivo simulation (IVIVS) approach in order to predict the outcome of a bioequivalence study. The predictability of the IVIVS procedure was evaluated through its application in the development process of a new generic product of amlodipine/irbesartan/hydrochlorothiazide. The developed IVIVS methodology is composed of three parts: (a) mathematical description of in vitro dissolution profiles, (b) mathematical description of in vivo kinetics, and (c) development of joint in vitro–in vivo simulations. The entire programming was done in MATLAB® and all created scripts were validated through other software. The IVIVS approach can be implemented for any number of subjects, clinical design, variability and can be repeated for thousands of times using Monte Carlo techniques. The probability of success of each scenario is recorded and finally, an overall assessment is made in order to select the most suitable batch. Alternatively, if the IVIVS shows reduced probability of BE success, the R&D department is advised to reformulate the product. In this study, the IVIVS approach predicted successfully the BE outcome of the three drugs. During the development of generics, the IVIVS approach can save time and expenses.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5545 ◽  
Author(s):  
Izaz Raouf ◽  
Piotr Gas ◽  
Heung Soo Kim

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document