scholarly journals Design of Jetty Piles Using Artificial Neural Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yongjei Lee ◽  
Sungchil Lee ◽  
Hun-Kyun Bae

To overcome the complication of jetty pile design process, artificial neural networks (ANN) are adopted. To generate the training samples for training ANN, finite element (FE) analysis was performed 50 times for 50 different design cases. The trained ANN was verified with another FE analysis case and then used as a structural analyzer. The multilayer neural network (MBPNN) with two hidden layers was used for ANN. The framework of MBPNN was defined as the input with the lateral forces on the jetty structure and the type of piles and the output with the stress ratio of the piles. The results from the MBPNN agree well with those from FE analysis. Particularly for more complex modes with hundreds of different design cases, the MBPNN would possibly substitute parametric studies with FE analysis saving design time and cost.

2016 ◽  
Vol 26 (01) ◽  
pp. 1750015 ◽  
Author(s):  
İsmail Koyuncu ◽  
İbrahim Şahin ◽  
Clay Gloster ◽  
Namık Kemal Sarıtekin

Artificial neural networks (ANNs) are implemented in hardware when software implementations are inadequate in terms of performance. Implementing an ANN as hardware without using design automation tools is a time consuming process. On the other hand, this process can be automated using pre-designed neurons. Thus, in this work, several artificial neural cells were designed and implemented to form a library of neurons for rapid realization of ANNs on FPGA-based embedded systems. The library contains a total of 60 different neurons, two-, four- and six-input biased and non-biased, with each having 10 different activation functions. The neurons are highly pipelined and were designed to be connected to each other like Lego pieces. Chip statistics of the neurons showed that depending on the type of the neuron, about 25 selected neurons can be fit in to the smallest Virtex-6 chip and an ANN formed using the neurons can be clocked up to 576.89[Formula: see text]MHz. ANN based Rössler system was constructed to show the effectiveness of using neurons in rapid realization of ANNs on embedded systems. Our experiments with the neurons showed that using these neurons, ANNs can rapidly be implemented as hardware and design time can significantly be reduced.


2015 ◽  
Vol 743 ◽  
pp. 612-616 ◽  
Author(s):  
J.H. Yu ◽  
De Bing Mao

Based on the feature of large thickness and poor drawing characteristics in extremely thick coal seam top-coal caving method, combined with numerous practical examples analyses, the primarily six factors influence the drawing characteristics were found out which are mining depth, coal seam strength, joint crack development, parting thickness in top-coal, caving ratios, immediate roof filling coefficient. According to 45 typical top-coal caving in extremely thick coal seam samples, the prediction of top-coal caving and drawing characteristics based on artificial neural networks was established and training samples and testing samples was determined. Use SPSS statistical software training the network model. Then select No. 9 coal seam first mining area of Tiaohu mine as the application case. The drawing property was forecast according to the established network model. Application results show that the use of artificial neural networks for top-coal caving and drawing characteristic prediction is effective and feasible.


2020 ◽  
Vol 12 (14) ◽  
pp. 2327
Author(s):  
Ming-Der Yang ◽  
Kai-Hsiang Huang ◽  
Hui-Ping Tsai

The critical issue facing hyperspectral image (HSI) classification is the imbalance between dimensionality and the number of available training samples. This study attempted to solve the issue by proposing an integrating method using minimum noise fractions (MNF) and Hilbert–Huang transform (HHT) transformations into artificial neural networks (ANNs) for HSI classification tasks. MNF and HHT function as a feature extractor and image decomposer, respectively, to minimize influences of noises and dimensionality and to maximize training sample efficiency. Experimental results using two benchmark datasets, Indian Pine (IP) and Pavia University (PaviaU) hyperspectral images, are presented. With the intention of optimizing the number of essential neurons and training samples in the ANN, 1 to 1000 neurons and four proportions of training sample were tested, and the associated classification accuracies were evaluated. For the IP dataset, the results showed a remarkable classification accuracy of 99.81% with a 30% training sample from the MNF1–14+HHT-transformed image set using 500 neurons. Additionally, a high accuracy of 97.62% using only a 5% training sample was achieved for the MNF1–14+HHT-transformed images. For the PaviaU dataset, the highest classification accuracy was 98.70% with a 30% training sample from the MNF1–14+HHT-transformed image using 800 neurons. In general, the accuracy increased as the neurons increased, and as the training samples increased. However, the accuracy improvement curve became relatively flat when more than 200 neurons were used, which revealed that using more discriminative information from transformed images can reduce the number of neurons needed to adequately describe the data as well as reducing the complexity of the ANN model. Overall, the proposed method opens new avenues in the use of MNF and HHT transformations for HSI classification with outstanding accuracy performance using an ANN.


Author(s):  
Kobiljon Kh. Zoidov ◽  
◽  
Svetlana V. Ponomareva ◽  
Daniel I. Serebryansky ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document