scholarly journals Numerical Solution of Fractional Integro-Differential Equations by Least Squares Method and Shifted Chebyshev Polynomial

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
D. Sh. Mohammed

We investigate the numerical solution of linear fractional integro-differential equations by least squares method with aid of shifted Chebyshev polynomial. Some numerical examples are presented to illustrate the theoretical results.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ting Ke ◽  
Guo Jiang ◽  
Mengting Deng

In this paper, a method based on the least squares method and block pulse function is proposed to solve the multidimensional stochastic Itô-Volterra integral equation. The Itô-Volterra integral equation is transformed into a linear algebraic equation. Furthermore, the error analysis is given by the isometry property and Doob’s inequality. Numerical examples verify the effectiveness and precision of this method.


2021 ◽  
Vol 06 (07) ◽  
Author(s):  
Oyedepo Taiye ◽  

The main purpose of this study gears towards finding numerical solution to fractional integro-differential equations. The technique involves the application of caputo properties and Chebyshev polynomials to reduce the problem to system of linear algebraic equations and then solved using MAPLE 18. To demonstrate the accuracy and applicability of the presented method some numerical examples are given. Numerical results show that the method is easy to implement and compares favorably with the exact results. The graphical solution of the method is displayed.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2692
Author(s):  
Bogdan Căruntu ◽  
Mădălina Sofia Paşca

We apply the polynomial least squares method to obtain approximate analytical solutions for a very general class of nonlinear Fredholm and Volterra integro-differential equations. The method is a relatively simple and straightforward one, but its precision for this type of equations is very high, a fact that is illustrated by the numerical examples presented. The comparison with previous approximations computed for the included test problems emphasizes the method’s simplicity and accuracy.


2019 ◽  
Vol 29 ◽  
pp. 01014
Author(s):  
Marioara Lăpădat ◽  
Mohsen Razzaghi ◽  
Mădălina Sofia Paşca

We use the Polynomial Least Squares Method (PLSM), which allows us to compute analytical approximate polynomial solutions for nonlinear ordinary differential equations with the mixed nonlinear conditions. The accuracy of the method is illustrated by a comparison with approximate solutions previously computed using Bernstein polynomials method.


Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


2020 ◽  
Vol 12 (4) ◽  
pp. 517-523
Author(s):  
G. Singh ◽  
I. Singh

In this paper, a collocation method based on Hermite polynomials is presented for the numerical solution of the electric circuit equations arising in many branches of sciences and engineering. By using collocation points and Hermite polynomials, electric circuit equations are transformed into a system of linear algebraic equations with unknown Hermite coefficients. These unknown Hermite coefficients have been computed by solving such algebraic equations. To illustrate the accuracy of the proposed method some numerical examples are presented.


Mathematics ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 99 ◽  
Author(s):  
Ioannis Argyros ◽  
Stepan Shakhno ◽  
Yurii Shunkin

We study an iterative differential-difference method for solving nonlinear least squares problems, which uses, instead of the Jacobian, the sum of derivative of differentiable parts of operator and divided difference of nondifferentiable parts. Moreover, we introduce a method that uses the derivative of differentiable parts instead of the Jacobian. Results that establish the conditions of convergence, radius and the convergence order of the proposed methods in earlier work are presented. The numerical examples illustrate the theoretical results.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 479 ◽  
Author(s):  
Bogdan Căruntu ◽  
Constantin Bota ◽  
Marioara Lăpădat ◽  
Mădălina Paşca

This paper applies the Polynomial Least Squares Method (PLSM) to the case of fractional Lane-Emden differential equations. PLSM offers an analytical approximate polynomial solution in a straightforward way. A comparison with previously obtained results proves how accurate the method is.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Francesco Costabile ◽  
Anna Napoli

A class of methods for the numerical solution of high-order differential equations with Lidstone and complementary Lidstone boundary conditions are presented. It is a collocation method which provides globally continuous differentiable solutions. Computation of the integrals which appear in the coefficients is generated by a recurrence formula. Numerical experiments support theoretical results.


Sign in / Sign up

Export Citation Format

Share Document