scholarly journals Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yankai Wu ◽  
Yanbin Li ◽  
Bin Niu

Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1124
Author(s):  
Zhifang Liang ◽  
Hongwu Wu ◽  
Ruipu Liu ◽  
Caiquan Wu

Green biodegradable plastics have come into focus as an alternative to restricted plastic products. In this paper, continuous long sisal fiber (SF)/polylactic acid (PLA) premixes were prepared by an extrusion-rolling blending process, and then unidirectional continuous long sisal fiber-reinforced PLA composites (LSFCs) were prepared by compression molding to explore the effect of long fiber on the mechanical properties of sisal fiber-reinforced composites. As a comparison, random short sisal fiber-reinforced PLA composites (SSFCs) were prepared by open milling and molding. The experimental results show that continuous long sisal fiber/PLA premixes could be successfully obtained from this pre-blending process. It was found that the presence of long sisal fibers could greatly improve the tensile strength of LSFC material along the fiber extension direction and slightly increase its tensile elongation. Continuous long fibers in LSFCs could greatly participate in supporting the load applied to the composite material. However, when comparing the mechanical properties of the two composite materials, the poor compatibility between the fiber and the matrix made fiber’s reinforcement effect not well reflected in SSFCs. Similarly, the flexural performance and impact performance of LSFCs had been improved considerably versus SSFCs.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1306 ◽  
Author(s):  
Binbin Zheng ◽  
Dongming Zhang ◽  
Weisha Liu ◽  
Yonghao Yang ◽  
Han Yang

As one of the largest artificial geotechnical structures on earth, the tailings dams are classified as one of the high-risk sources in China’s industry. How to improve the stability and safety of tailings dams remains a challenge for mine operators currently. In this paper, an innovative method is presented for improving the stability of tailings dams, in which the basalt fiber is used to reinforce tailings. The mechanical properties of tailings used for dam-construction have a great influence on the stability of tailings dam. In order to investigate the mechanical performance of basalt fiber-reinforced tailings (BFRT), a series of laboratory triaxial tests were conducted. The effects of five parameters (fiber length, fiber content, particle size, dry density and confining pressure) on the mechanical properties of BFRT were studied. The microstructure and the behavior of interfaces between basalt fibers and tailings particles were analyzed by using scanning electron microscopy (SEM). The triaxial experimental test results show that the mechanical properties of BFRT increase with the increases of fiber length and content, particle size, dry density and confining pressure. The SEM results indicate that the interfacial interaction between fibers and tailings particles is mainly affected by particle shape.


2009 ◽  
Vol 30 (6) ◽  
pp. 768-775 ◽  
Author(s):  
P.A. Sreekumar ◽  
Redouan Saiah ◽  
Jean Marc Saiter ◽  
Nathalie Leblanc ◽  
Kuruvilla Joseph ◽  
...  

2014 ◽  
Vol 697 ◽  
pp. 102-108
Author(s):  
Jian Hua Ning

Owing to the excellent mechanical properties and formability of carbon fiber reinforced thermoplastic composites, this composite has been applied in car industry. The static and dynamic mechanical properties of the composites are investigated under strain-rate from 0.001/s to 50/s. The experimental results show that the elastic model and tensile strength increase with the increase of strain rate, and show that the composite has remarkable rate-hardening effect. A constitute model that including rate-dependent effect is applied to present the strain-stress curve of the composite. The constitute model provides accurate constitute function for finite element analysis of the composite.. The microstructure of the composite is also investigated with scanning electric microscope, and the failure modes are discussed. The investigation provides the basis for engineering application of the composite.


2013 ◽  
Vol 35 (3) ◽  
pp. 3-11 ◽  
Author(s):  
Lech Bałachowski ◽  
Zbigniew Sikora

Abstract Bottom ash from EC Gdańsk and dredged material taken from the mouth of The Vistula were mixed to form an engineering material used for dike construction. Mixtures with different bottom ash content were tested in laboratory to determine its basic physical and mechanical properties. The optimum bottom ash-dredged material mixture, built in the corps of the test dike, contains 70% of ash. The optimum bottom ash content in the mixture was chosen taking into account high internal friction angle, good compaction and reduced filtration coefficient. The maximum dry density of the mixtures was measured in Proctor test for the mixtures formed in laboratory and on samples taken from the test dike. Minimum and maximum void ratio were also determined.


Sign in / Sign up

Export Citation Format

Share Document