scholarly journals Linearizability of Nonlinear Third-Order Ordinary Differential Equations by Using a Generalized Linearizing Transformation

2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
E. Thailert ◽  
S. Suksern

We discuss the linearization problem of third-order ordinary differential equation under the generalized linearizing transformation. We identify the form of the linearizable equations and the conditions which allow the third-order ordinary differential equation to be transformed into the simplest linear equation. We also illustrate how to construct the generalized linearizing transformation. Some examples of linearizable equation are provided to demonstrate our procedure.

2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Supaporn Suksern ◽  
Kwanpaka Naboonmee

In this article, the linearization problem of fifth-order ordinary differential equation is presented by using the generalized Sundman transformation. The necessary and sufficient conditions which allow the nonlinear fifth-order ordinary differential equation to be transformed to the simplest linear equation are found. There is only one case in the part of sufficient conditions which is surprisingly less than the number of cases in the same part for order 2, 3, and 4. Moreover, the derivations of the explicit forms for the linearizing transformation are exhibited. Examples for the main results are included.


2014 ◽  
Vol 58 (1) ◽  
pp. 183-197 ◽  
Author(s):  
John R. Graef ◽  
Johnny Henderson ◽  
Rodrica Luca ◽  
Yu Tian

AbstractFor the third-order differential equationy′″ = ƒ(t, y, y′, y″), where, questions involving ‘uniqueness implies uniqueness’, ‘uniqueness implies existence’ and ‘optimal length subintervals of (a, b) on which solutions are unique’ are studied for a class of two-point boundary-value problems.


2021 ◽  
Vol 5 (2) ◽  
pp. 579-583
Author(s):  
Muhammad Abdullahi ◽  
Bashir Sule ◽  
Mustapha Isyaku

This paper is aimed at deriving a 2-point zero stable numerical algorithm of block backward differentiation formula using Taylor series expansion, for solving first order ordinary differential equation. The order and zero stability of the method are investigated and the derived method is found to be zero stable and of order 3. Hence, the method is suitable for solving first order ordinary differential equation. Implementation of the method has been considered


2015 ◽  
Vol 08 (04) ◽  
pp. 1550076 ◽  
Author(s):  
A. Adesoji Obayomi ◽  
Michael Olufemi Oke

In this paper, a set of non-standard discrete models were constructed for the solution of non-homogenous second-order ordinary differential equation. We applied the method of non-local approximation and renormalization of the discretization functions to some problems and the result shows that the schemes behave qualitatively like the original equation.


1982 ◽  
Vol 37 (8) ◽  
pp. 830-839 ◽  
Author(s):  
A. Salat

The existence of quasi-periodic eigensolutions of a linear second order ordinary differential equation with quasi-periodic coefficient f{ω1t, ω2t) is investigated numerically and graphically. For sufficiently incommensurate frequencies ω1, ω2, a doubly indexed infinite sequence of eigenvalues and eigenmodes is obtained.The equation considered is a model for the magneto-hydrodynamic “continuum” in general toroidal geometry. The result suggests that continuum modes exist at least on sufficiently ir-rational magnetic surfaces


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
P. G. L. Leach ◽  
K. S. Govinder ◽  
K. Andriopoulos

Hidden symmetries entered the literature in the late Eighties when it was observed that there could be gain of Lie point symmetry in the reduction of order of an ordinary differential equation. Subsequently the reverse process was also observed. Such symmetries were termed “hidden”. In each case the source of the “new” symmetry was a contact symmetry or a nonlocal symmetry, that is, a symmetry with one or more of the coefficient functions containing an integral. Recent work by Abraham-Shrauner and Govinder (2006) on the reduction of partial differential equations demonstrates that it is possible for these “hidden” symmetries to have a point origin. In this paper we show that the same phenomenon can be observed in the reduction of ordinary differential equations and in a sense loosen the interpretation of hidden symmetries.


2021 ◽  
Vol 41 (5) ◽  
pp. 685-699
Author(s):  
Ivan Tsyfra

We study the relationship between the solutions of stationary integrable partial and ordinary differential equations and coefficients of the second-order ordinary differential equations invariant with respect to one-parameter Lie group. The classical symmetry method is applied. We prove that if the coefficients of ordinary differential equation satisfy the stationary integrable partial differential equation with two independent variables then the ordinary differential equation is integrable by quadratures. If special solutions of integrable partial differential equations are chosen then the coefficients satisfy the stationary KdV equations. It was shown that the Ermakov equation belong to a class of these equations. In the framework of the approach we obtained the similar results for generalized Riccati equations. By using operator of invariant differentiation we describe a class of higher order ordinary differential equations for which the group-theoretical method enables us to reduce the order of ordinary differential equation.


1967 ◽  
Vol 10 (5) ◽  
pp. 681-688 ◽  
Author(s):  
B.S. Lalli

The purpose of this paper is to obtain a set of sufficient conditions for “global asymptotic stability” of the trivial solution x = 0 of the differential equation1.1using a Lyapunov function which is substantially different from similar functions used in [2], [3] and [4], for similar differential equations. The functions f1, f2 and f3 are real - valued and are smooth enough to ensure the existence of the solutions of (1.1) on [0, ∞). The dot indicates differentiation with respect to t. We are taking a and b to be some positive parameters.


1968 ◽  
Vol 20 ◽  
pp. 720-726
Author(s):  
T. G. Hallam ◽  
V. Komkov

The stability of the solutions of an ordinary differential equation will be discussed here. The purpose of this note is to compare the stability results which are valid with respect to a compact set and the stability results valid with respect to an unbounded set. The stability of sets is a generalization of stability in the sense of Liapunov and has been discussed by LaSalle (5; 6), LaSalle and Lefschetz (7, p. 58), and Yoshizawa (8; 9; 10).


Sign in / Sign up

Export Citation Format

Share Document