scholarly journals Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Jing Yu ◽  
Jingwei Han

Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation andr-matrix are also given in this paper.

2015 ◽  
Vol 29 (22) ◽  
pp. 1550126 ◽  
Author(s):  
Ruguang Zhou

A hierarchy of super AKNS equations associated with a [Formula: see text] matrix-valued spectral problem is derived. It is shown that each equation in the hierarchy is bi-super Hamiltonian. Moreover, a new finite dimensional super Hamiltonian system (FDSHS), together with its Lax representation, [Formula: see text]-matrix and conversed integrals of motion, is obtained from the spectral problem by binary nonlinearization.


2008 ◽  
Vol 22 (04) ◽  
pp. 275-288 ◽  
Author(s):  
JINGSONG HE ◽  
JING YU ◽  
YI CHENG ◽  
RUGUANG ZHOU

We establish the binary nonlinearization approach of the spectral problem of the super AKNS system, and then use it to obtain the super finite-dimensional integrable Hamiltonian system in the supersymmetry manifold ℝ4N|2N. The super Hamiltonian forms and integrals of motion are given explicitly.


Author(s):  
Nicoletta Cantarini ◽  
Fabrizio Caselli ◽  
Victor Kac

AbstractGiven a Lie superalgebra $${\mathfrak {g}}$$ g with a subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 , and a finite-dimensional irreducible $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 -module F, the induced $${\mathfrak {g}}$$ g -module $$M(F)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {g}}_{\ge 0})}F$$ M ( F ) = U ( g ) ⊗ U ( g ≥ 0 ) F is called a finite Verma module. In the present paper we classify the non-irreducible finite Verma modules over the largest exceptional linearly compact Lie superalgebra $${\mathfrak {g}}=E(5,10)$$ g = E ( 5 , 10 ) with the subalgebra $${\mathfrak {g}}_{\ge 0}$$ g ≥ 0 of minimal codimension. This is done via classification of all singular vectors in the modules M(F). Besides known singular vectors of degree 1,2,3,4 and 5, we discover two new singular vectors, of degrees 7 and 11. We show that the corresponding morphisms of finite Verma modules of degree 1,4,7, and 11 can be arranged in an infinite number of bilateral infinite complexes, which may be viewed as “exceptional” de Rham complexes for E(5, 10).


2015 ◽  
Vol 27 (04) ◽  
pp. 1550011 ◽  
Author(s):  
Partha Guha

Recently, Kupershmidt [38] presented a Lie algebraic derivation of a new sixth-order wave equation, which was proposed by Karasu-Kalkani et al. [31]. In this paper, we demonstrate that Kupershmidt's method can be interpreted as an infinite-dimensional analogue of the Euler–Poincaré–Suslov (EPS) formulation. In a finite-dimensional case, we modify Kupershmidt's deformation of the Euler top equation to obtain the standard EPS construction on SO(3). We extend Kupershmidt's infinite-dimensional construction to construct a nonholonomic deformation of a wide class of coupled KdV equations, where all these equations follow from the Euler–Poincaré–Suslov flows of the right invariant L2 metric on the semidirect product group [Formula: see text], where Diff (S1) is the group of orientation preserving diffeomorphisms on a circle. We generalize our construction to the two-component Camassa–Holm equation. We also give a derivation of a nonholonomic deformation of the N = 1 supersymmetric KdV equation, dubbed as sKdV6 equation and this method can be interpreted as an infinite-dimensional supersymmetric analogue of the Euler–Poincaré–Suslov (EPS) method.


2010 ◽  
Vol 17 (03) ◽  
pp. 525-540 ◽  
Author(s):  
Xiaoning Xu ◽  
Yongzheng Zhang ◽  
Liangyun Chen

A new family of finite-dimensional modular Lie superalgebras Γ is defined. The simplicity and generators of Γ are studied and an explicit description of the derivation superalgebra of Γ is given. Moreover, it is proved that Γ is not isomorphic to any known Lie superalgebra of Cartan type.


2020 ◽  
Vol 16 (4) ◽  
pp. 637-650
Author(s):  
P. Guha ◽  
◽  
S. Garai ◽  
A.G. Choudhury ◽  
◽  
...  

Recently Sinelshchikov et al. [1] formulated a Lax representation for a family of nonautonomous second-order differential equations. In this paper we extend their result and obtain the Lax pair and the associated first integral of a non-autonomous version of the Levinson – Smith equation. In addition, we have obtained Lax pairs and first integrals for several equations of the Painlevé – Gambier list, namely, the autonomous equations numbered XII, XVII, XVIII, XIX, XXI, XXII, XXIII, XXIX, XXXII, XXXVII, XLI, XLIII, as well as the non-autonomous equations Nos. XV and XVI in Ince’s book.


Author(s):  
Nikolay Grantcharov ◽  
◽  
Vera Serganova ◽  

We describe all blocks of the category of finite-dimensional q(3)-supermodules by providing their extension quivers. We also obtain two general results about the representation of q(n): we show that the Ext quiver of the standard block of q(n) is obtained from the principal block of q(n-1) by identifying certain vertices of the quiver and prove a virtual BGG-reciprocity for q(n). The latter result is used to compute the radical filtrations of q(3) projective covers.


2012 ◽  
Vol 148 (5) ◽  
pp. 1561-1592 ◽  
Author(s):  
Brian D. Boe ◽  
Jonathan R. Kujawa ◽  
Daniel K. Nakano

AbstractLet ${\Xmathfrak g}={\Xmathfrak g}_{\zerox }\oplus {\Xmathfrak g}_{\onex }$ be a classical Lie superalgebra and let ℱ be the category of finite-dimensional ${\Xmathfrak g}$-supermodules which are completely reducible over the reductive Lie algebra ${\Xmathfrak g}_{\zerox }$. In [B. D. Boe, J. R. Kujawa and D. K. Nakano, Complexity and module varieties for classical Lie superalgebras, Int. Math. Res. Not. IMRN (2011), 696–724], we demonstrated that for any module M in ℱ the rate of growth of the minimal projective resolution (i.e. the complexity of M) is bounded by the dimension of ${\Xmathfrak g}_{\onex }$. In this paper we compute the complexity of the simple modules and the Kac modules for the Lie superalgebra $\Xmathfrak {gl}(m|n)$. In both cases we show that the complexity is related to the atypicality of the block containing the module.


2016 ◽  
Vol 68 (2) ◽  
pp. 258-279 ◽  
Author(s):  
Lucas Calixto ◽  
Adriano Moura ◽  
Alistair Savage

AbstractAn equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect to the action of a finite group Γ acting on X and q. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on X. We show that such representations are parameterized by a certain set of Γ-equivariant finitely supported maps from X to the set of isomorphism classes of irreducible finite-dimensional representations of q. In the special case where X is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.


Sign in / Sign up

Export Citation Format

Share Document