scholarly journals H∞Guaranteed Cost Control for Networked Control Systems under Scheduling Policy Based on Predicted Error

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Qixin Zhu ◽  
Kaihong Lu ◽  
Yonghong Zhu

Scheduling policy based on model prediction error is presented to reduce energy consumption and network conflicts at the actuator node, where the characters of networked control systems are considered, such as limited network bandwidth, limited node energy, and high collision probability. The object model is introduced to predict the state of system at the sensor node. And scheduling threshold is set at the controller node. Control signal is transmitted only if the absolute value of prediction error is larger than the threshold value. Furthermore, the model of networked control systems under scheduling policy based on predicted error is established by taking uncertain parameters and long time delay into consideration. The design method ofH∞guaranteed cost controller is presented by using the theory of Lyapunov and linear matrix inequality (LMI). Finally, simulations are included to demonstrate the theoretical results.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Zhang ◽  
Ming Lyu ◽  
Hamid Reza Karimi ◽  
Yuming Bo

This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is proposed. Then the sufficient conditions of sliding motion asymptotical stability are derived by means of the linear matrix inequality (LMI) approach on a designed surface. Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing the discrete-time sliding-mode reaching condition of the specified sliding surface. Finally, an illustrative example is provided to show the usefulness and effectiveness of the proposed design method.


Author(s):  
SHANBIN LI ◽  
YONGQIANG WANG ◽  
FENG XIA ◽  
YOUXIAN SUN

In this paper, the random time-delays and packet losses issues of networked control systems (NCS) within the framework of guaranteed cost control for Markovian jump linear systems (MJLSs) are addressed. A new delay-dependent sufficient condition for the existence of guaranteed cost controller and an upper bound of the cost function are presented by a new stochastic Lyapunov–Krasovskii functional. The state feedback problem for such system is formulated as a convex optimization over a set of linear matrix inequalities (LMIs) which can be very efficiently solved by interior-point methods. As examples to verify the proposed method, two plants in the networked setup are considered. The simulation results demonstrate the effectiveness of the method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Qixin Zhu ◽  
Kaihong Lu ◽  
Guangming Xie ◽  
Yonghong Zhu

For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI) approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.


2014 ◽  
Vol 556-562 ◽  
pp. 5501-5505 ◽  
Author(s):  
Ping Qian ◽  
Wen Rui Wang ◽  
Xue Qiang Li ◽  
Yin Zhong Ye

For a kind of networked control systems with short time-delay, establish discrete time-invariant system model. Construct the Lyapunov function based on the Lyapunov asymptotic stability principle. Using Linear Matrix Inequalities method given the sufficient condition of H∞ robust controller design method of closed-loop feedback control systems. Matlab simulation indicates the effectiveness and correctness of the controller design.


2010 ◽  
Vol 61 (2) ◽  
pp. 114-119 ◽  
Author(s):  
Quang Nguyen ◽  
Vojtech Veselý

Design of Robust Guaranteed Cost PID Controller for Networked Control SystemsThe paper addresses the problem of an output feedback guaranteed cost controller design for Networked Control Systems (NCSs) with time-delay and polytopic uncertainties. By constructing a new parameter-dependent Lyapunov functional and applying the free-weighting matrices technique, the parameter-dependent, delay-dependent design method will be obtained to synthesize PID controllers achieving a guaranteed cost such that the NCSs can be stabilized for all admissible uncertainties and time-delays. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Qixin Zhu ◽  
Kaihong Lu ◽  
Yonghong Zhu

By data drift, we mean the data received by the controller may be different from that sent by the sensor, or the data received by actuator may be different from that sent by the controller. The issues of guaranteed cost control for a class of continuous-time networked control systems with data drift are investigated. Firstly, with the consideration of data drift between sensor and controller, a closed-loop model of networked control systems including network factors such as time-delay and data-dropouts is established. And then, selecting an appropriate Lyapunov function, a guaranteed cost controller in terms of linear matrix inequality (LMI) is designed to asymptotically stabilize the networked control system with data drift. Finally, simulations are included to demonstrate the theoretical results.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Qixin Zhu ◽  
Kaihong Lu ◽  
Yonghong Zhu

The term double-fault networked control system means that sensor faults and actuator faults may occur simultaneously in networked control systems. The issues of modelling and an H∞ guaranteed cost fault-tolerant control in a piecewise delay method for double-fault networked control systems are investigated. The time-varying properties of sensor faults and actuator faults are modelled as two time-varying and bounded parameters. Based on the linear matrix inequality (LMI) approach, an H∞ guaranteed cost fault-tolerant controller in a piecewise delay method is proposed to guarantee the reliability and stability for the double-fault networked control systems. Simulations are included to demonstrate the theoretical results of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Lina Rong ◽  
Chengda Yu ◽  
Pengfei Guo ◽  
Hui Gao

The fault detection problem for a class of wireless networked control systems is investigated. A Bernoulli distributed parameter is introduced in modeling the system dynamics; moreover, multiple time delays arising in the communication are taken into account. The detection observer for tracking the system states is designed, which generates both the state errors and the output errors. By adopting the linear matrix inequality method, a sufficient condition for the stability of wireless networked control systems with stochastic uncertainties and multiple time delays is proposed, and the gain of the fault detection observer is obtained. Finally, an illustrated example is provided to show that the observer designed in this paper tracks the system states well when there is no fault in the systems; however, when fault happens, the observer residual signal rises rapidly and the fault can be quickly detected, which demonstrate the effectiveness of the theoretical results.


2013 ◽  
Vol 321-324 ◽  
pp. 1858-1862 ◽  
Author(s):  
Li Sheng Wei ◽  
Zhi Hui Mei ◽  
Ming Jiang

This study focus on α-Stability constraints for uncertain networked control systems (NCSs) subject to disturbance inputs, where the network transmission is connected with time-delay and packet dropout. The overall NCSs model is derived. In order to obtain much less conservative results, the sufficient condition for feasibility is presented in term of 2nd Lyapunov stability theory and a set of linear matrix inequalities (LMIs). This LMI approach can be the optimization problem of computation of the maximal allowed bound on the time-delay for NCSs.


Sign in / Sign up

Export Citation Format

Share Document