scholarly journals The Vector-Valued Functions Associated with Circular Cones

2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Jinchuan Zhou ◽  
Jein-Shan Chen

The circular cone is a pointed closed convex cone having hyperspherical sections orthogonal to its axis of revolution about which the cone is invariant to rotation, which includes second-order cone as a special case when the rotation angle is 45 degrees. LetLθdenote the circular cone inRn. For a functionffromRtoR, one can define a corresponding vector-valued functionfLθonRnby applyingfto the spectral values of the spectral decomposition ofx∈Rnwith respect toLθ. In this paper, we study properties that this vector-valued function inherits fromf, including Hölder continuity,B-subdifferentiability,ρ-order semismoothness, and positive homogeneity. These results will play crucial role in designing solution methods for optimization problem involved in circular cone constraints.

2011 ◽  
Vol 84 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MICHAEL G. COWLING ◽  
MICHAEL LEINERT

AbstractA submarkovian C0 semigroup (Tt)t∈ℝ+ acting on the scale of complex-valued functions Lp(X,ℂ) extends to a semigroup of operators on the scale of vector-valued function spaces Lp(X,E), when E is a Banach space. It is known that, if f∈Lp(X,ℂ), where 1<p<∞, then Ttf→f pointwise almost everywhere. We show that the same holds when f∈Lp(X,E) .


2020 ◽  
Vol 54 (1) ◽  
pp. 56-63
Author(s):  
A. I. Bandura ◽  
V. P. Baksa

We consider a class of vector-valued entire functions $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$. For this class of functions there is introduced a concept of boundedness of $\mathbf{L}$-index in joint variables. Let $|\cdot|_p$ be a norm in $\mathbb{C}^p$. Let $\mathbf{L}(z)=(l_{1}(z),\ldots,l_{n}(z))$, where $l_{j}(z)\colon \mathbb{C}^{n}\to \mathbb{R}_+$ is a positive continuous function.An entire vector-valued function $F\colon \mathbb{C}^{n}\rightarrow \mathbb{C}^{p}$ is said to be ofbounded $\mathbf{L}$-index (in joint variables), if there exists $n_{0}\in \mathbb{Z}_{+}$ such that $\displaystyle \forall z\in G \ \ \forall J \in \mathbb{Z}^n_{+}\colon \quad\frac{|F^{(J)}(z)|_p}{J!\mathbf{L}^J(z)}\leq \max \left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^K(z)} \colon K\in \mathbb{Z}^n_{+}, \|K\|\leq n_{0} \right \}.$ We assume the function $\mathbf{L}\colon \mathbb{C}^n\to\mathbb{R}^p_+$ such that $0< \lambda _{1,j}(R)\leq\lambda _{2,j}(R)<\infty$ for any $j\in \{1,2,\ldots, p\}$ and $\forall R\in \mathbb{R}_{+}^{p},$where $\lambda _{1,j}(R)=\inf\limits_{z_{0}\in \mathbb{C}^{p}} \inf \left \{{l_{j}(z)}/{l_{j}(z_{0})}\colon z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \},$ $\lambda _{2,j}(R)$ is defined analogously with replacement $\inf$ by $\sup$.It is proved the following theorem:Let $|A|_p=\max\{|a_j|\colon 1\leq j\leq p\}$ for $A=(a_1,\ldots,a_p)\in\mathbb{C}^p$. An entire vector-valued function $F$ has bounded $\mathbf{L}$-index in joint variables if and only if for every $R\in \mathbb{R}^{n}_+$ there exist $n_{0}\in \mathbb{Z}_{+}$, $p_0>0$ such that for all $z_{0}\in \mathbb{C}^{n}$ there exists $K_{0}\in \mathbb{Z}_{+}^{n}$, $\|K_0\|\leq n_{0}$, satisfying inequality $\displaystyle\!\max\!\left \{\frac{|F^{(K)}(z)|_p}{K!\mathbf{L}^{K}(z)} \colon \|K\|\leq n_{0},z\in \mathbb{D}^{n}[z_{0},R/\mathbf{L}(z_{0})]\right \}%\leq \nonumber\\\label{eq:5}\leq p_{0}\frac{|F^{(K_0)}(z_0)|_p}{K_0!\mathbf{L}^{K_0}(z_0)},$ where $\mathbb{D}^{n}[z_{0},R]=\{z=(z_1,\ldots,z_n)\in \mathbb{C}^{n}\colon |z_1-z_{0,1}|<r_{1},\ldots, |z_n-z_{0,n}|<r_{n}\}$ is the polydisc with $z_0=(z_{0,1},\ldots,z_{0,n}),$\ $R=(r_{1},\ldots,r_{n})$. This theorem is an analog of Fricke's Theorem obtained for entire functions of bounded index of one complex variable.


1971 ◽  
Vol 5 (2) ◽  
pp. 227-238 ◽  
Author(s):  
J.B. Diaz ◽  
R. Výborný

A general mean value theorem, for real valued functions, is proved. This mean value theorem contains, as a special case, the result that for any, suitably restricted, function f defined on [a, b], there always exists a number c in (a, b) such that f(c) − f(a) = f′(c)(c−a). A partial converse of the general mean value theorem is given. A similar generalized mean value theorem, for vector valued functions, is also established.


1995 ◽  
Vol 51 (2) ◽  
pp. 249-262 ◽  
Author(s):  
Pham Huu Sach ◽  
Ta Duy Phuong

This paper gives criteria, necessary or sufficient for a vector-valued function F = (f1, f2, …, fk) to be invex. Here each fi is of the -class (that is, each fi is a function whose gradient mapping is locally Lipschitz in a neighbourhood of x0) and the invexity of F means that F(x) − F(x0) ⊂ ˚F′(X) + Q for a fixed convex cone Q of Rk and every x near x0 (˚F′ being the Jacobian matrix of F at x0).


Author(s):  
Joram Lindenstrauss ◽  
David Preiss ◽  
Tiˇser Jaroslav

This chapter shows that if a Banach space with a Fréchet smooth norm is asymptotically smooth with modulus o(tⁿ logⁿ⁻¹(1/t)) then every Lipschitz map of X to a space of dimension not exceeding n has many points of Fréchet differentiability. In particular, it proves that two real-valued Lipschitz functions on a Hilbert space have a common point of Fréchet differentiability. The chapter first presents the theorem whose assumptions hold for any space X with separable dual, includes the result that real-valued Lipschitz functions on such spaces have points of Fréchet differentiability, and takes into account the corresponding mean value estimate. The chapter then gives the estimate for a “regularity parameter” and reduces the theorem to a special case. Finally, it discusses simplifications of the arguments of the proof of the main result in some special situations.


2017 ◽  
Vol 18 (6) ◽  
pp. 27-34
Author(s):  
V.G. Nikolaev

We consider the Schwarz problem for vector-valued functions analytic according to Douglis. We prove that under certain conditions on the matrix this problem is reduced to the Dirichlet problem for some equivalent system of second-order PDEs. The reversebility of transformations is proved, and on that ground the theorem of uniqueness is established. A special case when reduction is impossible is also viewed. The examples are given.


2020 ◽  
Vol 70 (5) ◽  
pp. 1141-1152
Author(s):  
Vita Baksa ◽  
Andriy Bandura ◽  
Oleh Skaskiv

AbstractIn this paper, we present necessary and sufficient conditions of boundedness of L-index in joint variables for vector-valued functions analytic in the unit ball $\begin{array}{} \mathbb{B}^2\! = \!\{z\!\in\!\mathbb{C}^2: |z|\! = \!\small\sqrt{|z_1|^2+|z_2|^2}\! \lt \! 1\}, \end{array} $ where L = (l1, l2): 𝔹2 → $\begin{array}{} \mathbb{R}^2_+ \end{array} $ is a positive continuous vector-valued function.Particularly, we deduce analog of Hayman’s theorem for this class of functions. The theorem shows that in the definition of boundedness of L-index in joint variables for vector-valued functions we can replace estimate of norms of all partial derivatives by the estimate of norm of (p + 1)-th order partial derivative. This form of criteria could be convenient to investigate analytic vector-valued solutions of system of partial differential equations because it allow to estimate higher-order partial derivatives by partial derivatives of lesser order. Also, we obtain sufficient conditions for index boundedness in terms of estimate of modulus of logarithmic derivative in each variable for every component of vector-valued function outside some exceptional set by the vector-valued function L(z).


2020 ◽  
pp. 1-13
Author(s):  
SEBASTIÁN PAVEZ-MOLINA

Abstract Let $(X,T)$ be a topological dynamical system. Given a continuous vector-valued function $F \in C(X, \mathbb {R}^{d})$ called a potential, we define its rotation set $R(F)$ as the set of integrals of F with respect to all T-invariant probability measures, which is a convex body of $\mathbb {R}^{d}$ . In this paper we study the geometry of rotation sets. We prove that if T is a non-uniquely ergodic topological dynamical system with a dense set of periodic measures, then the map $R(\cdot )$ is open with respect to the uniform topologies. As a consequence, we obtain that the rotation set of a generic potential is strictly convex and has $C^{1}$ boundary. Furthermore, we prove that the map $R(\cdot )$ is surjective, extending a result of Kucherenko and Wolf.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


2017 ◽  
Vol 173 (2) ◽  
pp. 357-390 ◽  
Author(s):  
N. Dinh ◽  
M. A. Goberna ◽  
M. A. López ◽  
T. H. Mo

Sign in / Sign up

Export Citation Format

Share Document