scholarly journals RobustH∞Control for a Class of Nonlinear Distributed Parameter Systems via Proportional-Spatial Derivative Control Approach

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Cheng-Dong Yang ◽  
Jianlong Qiu ◽  
Jun-Wei Wang

This paper addresses the problem of robustH∞control design via the proportional-spatial derivative (P-sD) control approach for a class of nonlinear distributed parameter systems modeled by semilinear parabolic partial differential equations (PDEs). By using the Lyapunov direct method and the technique of integration by parts, a simple linear matrix inequality (LMI) based design method of the robustH∞P-sD controller is developed such that the closed-loop PDE system is exponentially stable with a given decay rate and a prescribedH∞performance of disturbance attenuation. Moreover, a suboptimalH∞controller is proposed to minimize the attenuation level for a given decay rate. The proposed method is successfully employed to address the control problem of the FitzHugh-Nagumo (FHN) equation, and the achieved simulation results show its effectiveness.

2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Shenping Xiao ◽  
Liyan Wang ◽  
Hongbing Zeng ◽  
Lingshuang Kong ◽  
Bin Qin

The robustH∞filtering problem for a class of network-based systems with random sensor delay is investigated. The sensor delay is supposed to be a stochastic variable satisfying Bernoulli binary distribution. Using the Lyapunov function and Wirtinger’s inequality approach, the sufficient conditions are derived to ensure that the filtering error systems are exponentially stable with a prescribedH∞disturbance attenuation level and the filter design method is proposed in terms of linear matrix inequalities. The effectiveness of the proposed method is illustrated by a numerical example.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Chengdong Yang ◽  
Jianlong Qiu ◽  
Kejia Yi ◽  
Xiangyong Chen ◽  
Ancai Zhang ◽  
...  

This paper addresses the exponential synchronization problem of a class of master-slave distributed parameter systems (DPSs) with spatially variable coefficients and spatiotemporally variable nonlinear perturbation, modeled by a couple of semilinear parabolic partial differential equations (PDEs). With a locally Lipschitz constraint, the perturbation is a continuous function of time, space, and system state. Firstly, a sufficient condition for the robust exponential synchronization of the unforced semilinear master-slave PDE systems is investigated for all admissible nonlinear perturbations. Secondly, a robust distributed proportional-spatial derivative (P-sD) state feedback controller is desired such that the closed-loop master-slave PDE systems achieve exponential synchronization. Using Lyapunov’s direct method and the technique of integration by parts, the main results of this paper are presented in terms of spatial differential linear matrix inequalities (SDLMIs). Finally, two numerical examples are provided to show the effectiveness of the proposed methods applied to the robust exponential synchronization problem of master-slave PDE systems with nonlinear perturbation.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaona Song ◽  
Mi Wang ◽  
Shuai Song ◽  
Jingtao Man

This paper studies fuzzy controller design problem for a class of nonlinear switched distributed parameter systems (DPSs) subject to time-varying delay. Initially, the original nonlinear DPSs are accurately described by Takagi-Sugeno fuzzy model in a local region. On the basis of parallel distributed compensation technique, mode-dependent fuzzy proportional and fuzzy proportional-spatial-derivative controllers are constructed, respectively. Subsequently, using single Lyapunov-Krasovskii functional and some matrix inequality methods, sufficient conditions that guarantee the stability and dissipativity of the closed-loop systems are presented in the form of linear matrix inequalities, which allow the control gain matrices to be easily obtained. Finally, numerical examples are provided to demonstrate the validity of the designed controllers.


Author(s):  
Xin Wang ◽  
Edwin E. Yaz ◽  
Susan C. Schneider ◽  
Yvonne I. Yaz

A novel H2–H∞ State Dependent Riccati Equation control approach is presented for providing a generalized control framework to discrete time nonlinear system. By solving a generalized Riccati Equation at each time step, the nonlinear state feedback control solution is found to satisfy mixed performance criteria guaranteeing quadratic optimality with inherent stability property in combination with H∞ type of disturbance attenuation. Two numerical techniques to compute the solution of the resulting Riccati equation are presented: The first one is based on finding the steady state solution of the difference equation at every step and the second one is based on finding the minimum solution of a linear matrix inequality. The effectiveness of the proposed techniques is demonstrated by simulations involving the control of an inverted pendulum on a cart, a benchmark mechanical system.


Author(s):  
Xingyu Zhou ◽  
Haoping Wang ◽  
Yang Tian

In this study, the problem of finite-time stability and boundedness for parabolic singular distributed parameter systems in the sense of [Formula: see text] norm is investigated. First, two new results on [Formula: see text] norm-based finite-time stability and finite-time boundedness for above-mentioned systems, inspired by the light of partial differential equations theory and Lyapunov functional method, are presented. Then, some sufficient conditions of [Formula: see text] norm-based finite-time stability and boundedness are established by virtue of differential inequalities and linear matrix inequalities. Furthermore, the distributed state feedback controllers are constructed to guarantee the [Formula: see text] norm-based finite-time stable and bounded of the closed-loop singular distributed parameter systems. Finally, numerical simulations on a specific numerical example and the building temperature control system equipped with air conditioning are given to demonstrate the validity of the proposed methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Dian Sheng ◽  
Xuebo Yang ◽  
Hamid Reza Karimi

This paper studies the problem of guaranteed cost control for spacecraft evacuation. The relative dynamic model is established based on Clohessy-Wiltshire (C-W) equations. The paper has taken parameter uncertainty, output tracking, disturbance attenuation, and fuel cost into consideration. The paper introduces a new Lyapunov approach, so the controller design problem can be transferred into a convex optimization problem subject to linear matrix inequality (LMI) constraints. By using the controller, the spacecraft evacuation can be completed in a safe extent. Meanwhile, the fuel cost also has an upper bound. Then the paper analyzes the approach of evacuation and discusses possible initial states of the spacecraft for the controller design. An illustrative example is applied to show the effectiveness of the proposed control design method, and different performances caused by different initial states of spacecraft (-V-bar, -R-bar, and +H-bar) are simulated.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kun Yuan ◽  
Abdulaziz Alofi ◽  
Jinde Cao ◽  
Abdullah Al-Mazrooei ◽  
Ahmed Elaiw

By combining parabolic partial differential equation (PDE) theory with Lyapunov technique, the synchronization is studied for a class of coupled distributed parameter systems (DPS) described by PDEs. First, based on Kronecker product and Lyapunov functional, some easy-to-test sufficient condition is given to ensure the synchronization of coupled DPS with time delay. Secondly, in the case that the whole coupled system cannot synchronize by itself, the proportional-spatial derivative (P-sD) state feedback controller is designed and applied to force the network to synchronize. The sufficient condition on the existence of synchronization controller is given in terms of a set of linear matrix inequalities. Finally, the effectiveness of the proposed control design methodology is demonstrated in numerical simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Li Li ◽  
Fucheng Liao

A preview controller design method for discrete-time systems based on LMI is proposed. First, we use the difference between a system state and its steady-state value, instead of the usual difference between system states, to transform the tracking problem into a regulator problem. Then, based on the Lyapunov stability theory and linear matrix inequality (LMI) approach, the preview controller ensuring asymptotic stability of the closed-loop system for the derived augmented error system is found. And an extended functional observer is designed in this paper which can achieve disturbance attenuation in the estimation process; as a result, the state of the system can be reconstructed rapidly and accurately. The controller gain matrix is obtained by solving an LMI problem. By incorporating the controller obtained into the original system, we obtain the preview controller of the system under consideration. To make sure that the output tracks the reference signal without steady-state error, an integrator is introduced. The numerical simulation example also illustrates the effectiveness of the results in the paper.


Sign in / Sign up

Export Citation Format

Share Document