scholarly journals Planar and Nonplanar Solitary Waves in a Four-Component Relativistic Degenerate Dense Plasma

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. R. Hossen ◽  
L. Nahar ◽  
A. A. Mamun

The nonlinear propagation of electrostatic perturbation modes in an unmagnetized, collisionless, relativistic, degenerate plasma (containing both nonrelativistic and ultrarelativistic degenerate electrons, nonrelativistic degenerate ions, and arbitrarily charged static heavy ions) has been investigated theoretically. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method. Their solitary wave solution is obtained and numerically analyzed in case of both planar and nonplanar (cylindrical and spherical) geometry. It has been observed that the ion-acoustic (IA) and modified ion-acoustic (mIA) solitary waves have been significantly changed due to the effects of degenerate plasma pressure and number densities of the arbitrarily charged heavy ions. It has been also found that properties of planar K-dV solitons are quite different from those of nonplanar K-dV solitons. There are numerous variations in case of mIA solitary waves due to the polarity of heavy ions. The basic features and the underlying physics of IA and mIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.

2015 ◽  
Vol 81 (3) ◽  
Author(s):  
K. N. Mukta ◽  
M. S. Zobaer ◽  
N. Roy ◽  
A. A. Mamun

The nonlinear propagation of dust ion-acoustic (DIA) waves in a unmagnetized collisionless degenerate dense plasma (containing degenerate electron and positron, and classical ion fluids) has been theoretically investigated. The K-dV equation has been derived by employing the reductive perturbation method and by taking into account the effect of different plasma parameters in plasma fluid. The stationary solitary wave solution of K-dV equation is obtained, and numerically analyzed to identify the basic properties of DIA solitary structures. It has been shown that depending on plasma parametric values, the degenerate plasma under consideration supports compressive or rarefactive solitary structures. It has been also found that the effect of pressures on electrons, ions, and positrons significantly modify the basic features of solitary waves that are found to exist in such a plasma system. The relevance of our results in astrophysical objects such as white dwarfs and neutron stars, which are of scientific interest, is discussed briefly.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Muhammad Khalid ◽  
Mohsin Khan ◽  
Ata ur-Rahman ◽  
Muhammad Irshad

Abstract The nonlinear propagation of ion-acoustic (IA) electrostatic solitary waves (SWs) is studied in a magnetized electron–ion (e–i) plasma in the presence of pressure anisotropy with electrons following Tsallis distribution. The Korteweg–de Vries (KdV) type equation is derived by employing the reductive perturbation method (RPM) and its solitary wave (SW) solution is determined and analyzed. The effect of nonextensive parameter q, parallel component of anisotropic ion pressure p 1, perpendicular component of anisotropic ion pressure p 2, obliqueness angle θ, and magnetic field strength Ω on the characteristics of SW structures is investigated. The present investigation could be useful in space and astrophysical plasma systems.


1982 ◽  
Vol 60 (4) ◽  
pp. 392-396 ◽  
Author(s):  
M. K. Kalita ◽  
S. Bujarbarua

Considering the electron velocity distribution far from Maxwellian, we have investigated the nonlinear propagation of ion acoustic waves in a plasma consisting of warm ions. The solitary wave solution has been obtained for this case retaining terms up to the third order in the usual reductive perturbation method.


2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2012 ◽  
Vol 79 (2) ◽  
pp. 163-168 ◽  
Author(s):  
U. M. ABDELSALAM ◽  
M. M. SELIM

AbstractThe hydrodynamic equations of positive and negative ions, degenerate electrons, and the Poisson equation are used along with the reductive perturbation method to derive the three-dimensional Zakharov–Kuznetsov (ZK) equation. The G′/G-expansion method is used to obtain a new class of solutions for the ZK equation. At certain condition, these solutions can describe the solitary waves that propagate in our plasma. The effects of negative ion concentrations, the positive/negative ion cyclotron frequency, as well as positive-to-negative ion mass ratio on solitary pulses are examined. Finally, the present study might be helpful to understand the propagation of nonlinear ion-acoustic solitary waves in a dense plasma, such as in astrophysical objects.


2013 ◽  
Vol 79 (5) ◽  
pp. 789-795 ◽  
Author(s):  
UDAY NARAYAN GHOSH ◽  
PRASANTA CHATTERJEE

AbstractThe head-on collision between two cylindrical/spherical ion acoustic solitary waves (IASWs) in un-magnetized plasmas comprising inertial ions and q-non-extensive electrons and positrons is investigated using the extended version of the Poincaré–Lighthill–Kuo perturbation method. How the interactions are taking place in cylindrical and spherical geometry are studied, and the collision is shown at different times. The non-planar geometry can modify analytical phase shifts following the head-on collision are derived. The effects of q-non-extensive electrons and positrons on the phase shift are studied. It is shown that the properties of the interaction of IASWs in cylindrical and spherical geometry are very different.


1979 ◽  
Vol 57 (12) ◽  
pp. 2136-2142 ◽  
Author(s):  
C. S. Lai

The effect of the third-order corrections on ion-acoustic solitary waves is studied on the basis of the reductive perturbation method. The secular terms in the third-order approximation are eliminated by employing the renormalization scheme of Kodama and Taniuti in an unambiguous manner. It is found that the contribution of the third-order corrections to the soliton velocities and widths is rather minimal.


2012 ◽  
Vol 79 (1) ◽  
pp. 65-68 ◽  
Author(s):  
M. S. ZOBAER ◽  
N. ROY ◽  
A. A. MAMUN

AbstractA theoretical investigation on the nonlinear propagation of ion-acoustic waves in a degenerate dense plasma has been made by employing the reductive perturbation method. The Burger's equation has been derived, and numerically analyzed. The basic features of electrostatic shock structures have been examined. It has been shown that the plasma system under consideration supports the propagation of electrostatic shock structures. The implications of our results (obtained from this investigation) in compact astrophysical objects have been briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document