scholarly journals Adaptive Control for Modified Projective Synchronization-Based Approach for Estimating All Parameters of a Class of Uncertain Systems: Case of Modified Colpitts Oscillators

2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Soup Tewa Kammogne ◽  
Hilaire Bertrand Fotsin

A method of estimation of all parameters of a class of nonlinear uncertain dynamical systems is considered, based on the modified projective synchronization (MPS). The case of modified Colpitts oscillators is investigated. Through a suitable transformation of the dynamical system, sufficient conditions for achieving synchronization are derived based on Lyapunov stability theory. Global stability and asymptotic robust synchronization of the considered system are investigated. The proposed approach offers a systematic design procedure for robust adaptive synchronization of a large class of chaotic systems. The combined effect of both an additive white Gaussian noise (AWGN) and an artificial perturbation is numerically investigated. Results of numerical simulations confirm the effectiveness of the proposed control strategy.

2009 ◽  
Vol 2009 ◽  
pp. 1-10 ◽  
Author(s):  
Jui-sheng Lin ◽  
Neng-Sheng Pai ◽  
Her-Terng Yau

This study demonstrates the modified projective synchronization in Chen-Lee chaotic system. The variable structure control technology is used to design the synchronization controller with input nonlinearity. Based on Lyapunov stability theory, a nonlinear controller and some generic sufficient conditions can be obtained to guarantee the modified projective synchronization, including synchronization, antisynchronization, and projective synchronization in spite of the input nonlinearity. The numerical simulation results show that the synchronization and antisynchronization can coexist in Chen-Lee chaotic systems. It demonstrates the validity and feasibility of the proposed controller.


2014 ◽  
Vol 687-691 ◽  
pp. 444-446
Author(s):  
Fan Di Zhang

In this paper, the synchronization of a neural network with community structure is investigated. Cluster projective generalizes previously existing synchronization schemes. The cluster projective synchronization is more general that includes projective synchronization and cluster synchronization, as its special cases. The cluster projective synchronization of these networks is discussed via some pinning control strategy. Several sufficient conditions for the network to achieve cluster projective synchronization are derived based on Lyapunov stability theory. Numerical simulations are used to demonstrate the effectiveness and feasibility of the proposed scheme.


2008 ◽  
Vol 18 (08) ◽  
pp. 2425-2435 ◽  
Author(s):  
SAMUEL BOWONG ◽  
RENÉ YAMAPI

This study addresses the adaptive synchronization of a class of uncertain chaotic systems in the drive-response framework. For a class of uncertain chaotic systems with parameter mismatch and external disturbances, a robust adaptive observer based on the response system is constructed to practically synchronize the uncertain drive chaotic system. Lyapunov stability theory ensures the practical synchronization between the drive and response systems even if Lipschitz constants on function matrices and bounds on uncertainties are unknown. Numerical simulation of two illustrative examples are given to verify the effectiveness of the proposed method.


2012 ◽  
Vol 466-467 ◽  
pp. 1261-1265
Author(s):  
Chun Mei Wang ◽  
Ren Long Chang

Based on techniques from the state observer design and the pole placement technique, we present a systematic design procedure to synchronize a modified coupled dynamos system by a scaling factor ( projective synchronization ). Compared with the method proposed by Wen and Xu, this method eliminates the nonlinear item from the output of the drive system. Furthermore, the scaling factor can be adjusted arbitrarily in due course of control without degrading the controllability. Finally, feasibility of the technique is illustrated for the unified chaotic system.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Chengjie Xu ◽  
Housheng Su ◽  
Chen Liu ◽  
Guohua Zhang

AbstractIn this paper, we investigate distributed robust adaptive synchronization for complex networked systems with bounded disturbances. We propose both average synchronization protocol and leader-following synchronization protocol based on adaptive control and variable structure control strategies. The synchronization conditions do not require any global information except a connection assumption under the adaptive control method. Furthermore, the external disturbances are attenuated effectively. Finally, we present numerical simulations to illustrate the theoretical findings.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Hongjuan Liu ◽  
Zhiliang Zhu ◽  
Hai Yu ◽  
Qian Zhu

A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS) of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL) control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.


Pramana ◽  
2016 ◽  
Vol 86 (6) ◽  
pp. 1223-1241 ◽  
Author(s):  
YIMING LU ◽  
PING HE ◽  
SHU-HUA MA ◽  
GUO-ZHI LI ◽  
SALEH MOBAYBEN

Sign in / Sign up

Export Citation Format

Share Document