Use of Artificial Neural Networks for Calculating Elasticity Modulus of Construction Layers of Non-Rigid Road Surfacing Based on Natural Data

Author(s):  
М. М. М. Елшами ◽  
А. Н. Тиратурян ◽  
А. Н. Канищев

Постановка задачи. Рассматриваются вопросы использования искусственных нейронных сетей при решении задач обработки результатов инструментальных регистраций чаш прогибов нежесткой дорожной одежды с использованием установок ударного нагружения FWD . Результаты. Проведен анализ и отмечены недостатки существующих методов обработки экспериментальных чаш прогибов, в частности метода обратного расчета модулей упругости слоев дорожных одежд, заключающиеся в длительном времени выполнения расчетов и неустойчивости получаемых результатов. Построена структура искусственной нейронной сети для определения модулей упругости слоев дорожной одежды. Обучение искусственной нейронной сети осуществлялось с использованием метода обратного распространения ошибки. Выводы. Разработанная нейронная сеть продемонстрировала хорошие результаты при обучении по тестовому набору данных, а также высокую точность прогнозирования модулей упругости слоев дорожных одежд. Statement of the problem. The article is devoted to the use of artificial neural networks in solving the problems of processing the results of instrumental recording of bowls of deflections of non-rigid road surfacing using FWD shock loading settings. Results. The analysis was carried out, the shortcomings of the existing processing methods were identified, in particular the backcalculation method, which involves a long calculation time, and the instability of the results obtained. The structure of the artificial neural network was designed to determine the elastic moduli of the pavement layers. Training of an artificial neural network was carried out using the method of back propagation of error. Conclusions. The developed neural network has shown good results in training on the test data set, as well as high accuracy of prediction of the elastic moduli of the pavement.

Author(s):  
M. M. M. Elshamy ◽  
A. N. Tiraturyan

Statement of the problem. The article is devoted to the use of artificial neural networks in solving the problems of processing the results of instrumental recording of bowls of flexible pavement deflections using FWD shock loading settings. Results. The analysis was carried out, the shortcomings of the existing processing methods were noted, in particular the “backcalculation” method, which consists of a long calculation time, and the instability of the results obtained. The structure of the artificial neural network was built to determine the elastic moduli of the pavement layers. Training of an artificial neural network was carried out using the method of back propagation of error. Conclusions. The developed neural network has shown good results in training on the test data set, as well as high accuracy of prediction of the elastic moduli of the pavement.


Author(s):  
Mustafa Soylak ◽  
Tuğrul Oktay ◽  
İlke Turkmen

In our article, inverse kinematic problem of a plasma cutting robot with three degree of freedom is solved using artificial neural networks. Artificial neural network was trained using joint angle values according to cartesian coordinates ( x, y, z) of end point of a robotic arm. The Levenberg–Marquardt training algorithm was applied to educate artificial neural network. To validate the designed neural network, it was tested using a new test data set which is not applied in training. A simulation was performed on a three-dimensional model of MSC.ADAMS software using angle values obtained from artificial neural network test. It was revealed from this simulation that trajectory of plasma cutting torch obtained using artificial neural network agreed well with desired trajectory.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 402
Author(s):  
Y Yusmartato ◽  
Zulkarnain Lubis ◽  
Solly Arza ◽  
Zulfadli Pelawi ◽  
A Armansah ◽  
...  

Lockers are one of the facilities that people use to store stuff. Artificial neural networks are computational systems where architecture and operations are inspired by the knowledge of biological neurons in the brain, which is one of the artificial representations of the human brain that always tries to stimulate the learning process of the human brain. One of the utilization of artificial neural network is for pattern recognition. The face of a person must be different but sometimes has a shape similar to the face of others, because the facial pattern is a good pattern to try to be recognized by using artificial neural networks. Pattern recognition on artificial neural network can be done by back propagation method. Back propagation method consists of input layer, hidden layer and output layer.  


Author(s):  
M. Sailaja ◽  
R. D. V. Prasad

Nowadays the robot technology is advancing rapidly and the use of robots in industries has been increasing. In designing a robot manipulator, kinematicsplays a vital role. The kinematic problem of manipulator control is divided into two types, direct kinematics and inverse kinematics. Robot inverse kinematics, which is important in robot path planning, is a fundamental problem in robotic control. Past solutions for this problem have been through the use of various algebraic or algorithmic procedures, which may be less accurate and time consuming. Artificial neural networks have the ability to approximate highly non-linear functions applied in robot control. The neural network approach deserves examination because of the fundamental properties of computation speed, and they can generalize untrained solutions. In the present work an attempt has been made to evaluate the problemof robot inverse kinematics of Stanford manipulator using artificial neural network approach. Finally two programs are written using C language to solve inverse kinematic problem of Stanford manipulator using Back propagation method of artificial neural network. In this network, the input layer has six nodes, the hidden layer has three nodes, and the output layer has two nodes. And also Elbow manipulator was modelled and its direct kinematics was analysed.


2019 ◽  
Vol 1 (1) ◽  
pp. p8
Author(s):  
Jamilu Auwalu Adamu

One of the objectives of this paper is to incorporate fat-tail effects into, for instance, Sigmoid in order to introduce Transparency and Stability into the existing stochastic Activation Functions. Secondly, according to the available literature reviewed, the existing set of Activation Functions were introduced into the Deep learning Artificial Neural Network through the “Window” not properly through the “Legitimate Door” since they are “Trial and Error “and “Arbitrary Assumptions”, thus, the Author proposed a “Scientific Facts”, “Definite Rules: Jameel’s Stochastic ANNAF Criterion”, and a “Lemma” to substitute not necessarily replace the existing set of stochastic Activation Functions, for instance, the Sigmoid among others. This research is expected to open the “Black-Box” of Deep Learning Artificial Neural networks. The author proposed a new set of advanced optimized fat-tailed Stochastic Activation Functions EMANATED from the AI-ML-Purified Stocks Data  namely; the Log – Logistic (3P) Probability Distribution (1st), Cauchy Probability Distribution (2nd), Pearson 5 (3P) Probability Distribution (3rd), Burr (4P) Probability Distribution (4th), Fatigue Life (3P) Probability Distribution (5th), Inv. Gaussian (3P) Probability Distribution (6th), Dagum (4P) Probability Distribution (7th), and Lognormal (3P) Probability Distribution (8th) for the successful conduct of both Forward and Backward Propagations of Deep Learning Artificial Neural Network. However, this paper did not check the Monotone Differentiability of the proposed distributions. Appendix A, B, and C presented and tested the performances of the stressed Sigmoid and the Optimized Activation Functions using Stocks Data (2014-1991) of Microsoft Corporation (MSFT), Exxon Mobil (XOM), Chevron Corporation (CVX), Honda Motor Corporation (HMC), General Electric (GE), and U.S. Fundamental Macroeconomic Parameters, the results were found fascinating. Thus, guarantee, the first three distributions are excellent Activation Functions to successfully conduct any Stock Deep Learning Artificial Neural Network. Distributions Number 4 to 8 are also good Advanced Optimized Activation Functions. Generally, this research revealed that the Advanced Optimized Activation Functions satisfied Jameel’s ANNAF Stochastic Criterion depends on the Referenced Purified AI Data Set, Time Change and Area of Application which is against the existing “Trial and Error “and “Arbitrary Assumptions” of Sigmoid, Tanh, Softmax, ReLu, and Leaky ReLu.


2021 ◽  
Vol 43 (2) ◽  
pp. 60-67
Author(s):  
B.I. Basok ◽  
M.P. Novitska ◽  
V.P. Kravchenko

The paper considers short-term forecasting of the intensity of solar radiation in the city of Odessa based on an artificial neural network. The artificial neural network was trained on the experimental data of the ground weather station (Davis 6162EU), which is installed on the roof of the educational building of the Odessa National Polytechnic University. Modeling, validation, and testing of experimental data were performed using the MATLAB software package, namely Neural Network Toolbox. The Levenberg-Markwatt model is used in this work. The analyzed data set was divided into proportions of 70%, 15%, 15% for neural network training, its validation, and testing, respectively. The results which the trained neural network gave during forecasting within the framework of the database and outside it are given. The deviation between real and forecast data is analyzed. The root-mean-square error on December 26, 2016 was 13.03 W / m2, and on December 27, 2016 - 9.44 W / m2 when forecasting outside the database. Evaluation of the accuracy of an artificial neural network has shown its effectiveness in predicting the intensity of solar radiation. To predict parameters based on artificial neural networks, experimental data that describe a real system are needed. Artificial neural networks, like other approximation methods, have both advantages and disadvantages.


2007 ◽  
Vol 353-358 ◽  
pp. 2325-2328
Author(s):  
Zi Chang Shangguan ◽  
Shou Ju Li ◽  
Mao Tian Luan

The inverse problem of rock damage detection is formulated as an optimization problem, which is then solved by using artificial neural networks. Convergence measurements of displacements at a few of positions are used to determine the location and magnitude of the damaged rock in the excavation disturbed zones. Unlike the classical optimum methods, ANN is able to globally converge. However, the most frequently used Back-Propagation neural networks have a set of problems: dependence on initial parameters, long training time, lack of problemindependent way to choose appropriate network topology and incomprehensive nature of ANNs. To identify the location and magnitude of the damaged rock using an artificial neural network is feasible and a well trained artificial neural network by Levenberg-Marquardt algorithm reveals an extremely fast convergence and a high degree of accuracy.


2020 ◽  
Vol 33 (4) ◽  
pp. 110
Author(s):  
Layla A. Ahmed

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Jenkins models on a data set for predict. Comparisons between the models has been performed using Criterion indicator Akaike information Criterion, mean square of error,  root mean square of error, and mean absolute percentage error, concluding that the prediction for patients with hypertension by using artificial neural networks model is the best.


ISRN Forestry ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Renato Vinícius Oliveira Castro ◽  
Carlos Pedro Boechat Soares ◽  
Helio Garcia Leite ◽  
Agostinho Lopes de Souza ◽  
Gilciano Saraiva Nogueira ◽  
...  

This work aimed to model the growth and yield of Eucalyptus stands located in northern Brazil, at the individual tree level, by using artificial neural networks (ANNs). Data from permanent plots were used for training the neural networks to predict tree height and diameter as well as mortality probability. Once trained, the networks were evaluated using an independent data set. The first group was composed of 33 plots (11 in each productive capacity class) and was used for artificial neural network training. In five measurements, this group totaled 8,735 cases (measurements of individual trees), as each plot had 53 trees on average throughout this evaluation. The second group was composed of 30 plots (10 in each productive capacity class) and was used for model validation. This group totaled 7,756 cases. Were tested different network architectures Multilayer Perceptron (MLP). Results revealed an underestimation bias for number of surviving trees. However, estimates of diameter, height, and volume per hectare were found to be accurate. This indicates that artificial neural networks are a viable alternative to the traditional growth and yield modeling approach in the forestry sector.


Sign in / Sign up

Export Citation Format

Share Document