scholarly journals Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qingjian Ni ◽  
Jianming Deng

In evolutionary algorithm, population diversity is an important factor for solving performance. In this paper, combined with some population diversity analysis methods in other evolutionary algorithms, three indicators are introduced to be measures of population diversity in PSO algorithms, which are standard deviation of population fitness values, population entropy, and Manhattan norm of standard deviation in population positions. The three measures are used to analyze the population diversity in a relatively new PSO variant—Dynamic Probabilistic Particle Swarm Optimization (DPPSO). The results show that the three measure methods can fully reflect the evolution of population diversity in DPPSO algorithms from different angles, and we also discuss the impact of population diversity on the DPPSO variants. The relevant conclusions of the population diversity on DPPSO can be used to analyze, design, and improve the DPPSO algorithms, thus improving optimization performance, which could also be beneficial to understand the working mechanism of DPPSO theoretically.


2011 ◽  
Vol 2 (3) ◽  
pp. 43-69 ◽  
Author(s):  
Shi Cheng ◽  
Yuhui Shi ◽  
Quande Qin

Premature convergence happens in Particle Swarm Optimization (PSO) for solving both multimodal problems and unimodal problems. With an improper boundary constraints handling method, particles may get “stuck in” the boundary. Premature convergence means that an algorithm has lost its ability of exploration. Population diversity is an effective way to monitor an algorithm’s ability of exploration and exploitation. Through the population diversity measurement, useful search information can be obtained. PSO with a different topology structure and a different boundary constraints handling strategy will have a different impact on particles’ exploration and exploitation ability. In this paper, the phenomenon of particles gets “stuck in” the boundary in PSO is experimentally studied and reported. The authors observe the position diversity time-changing curves of PSOs with different topologies and different boundary constraints handling techniques, and analyze the impact of these setting on the algorithm’s ability of exploration and exploitation. From these experimental studies, an algorithm’s ability of exploration and exploitation can be observed and the search information obtained; therefore, more effective algorithms can be designed to solve problems.



Author(s):  
Wei Li ◽  
Xiang Meng ◽  
Ying Huang ◽  
Soroosh Mahmoodi

AbstractMultiobjective particle swarm optimization (MOPSO) algorithm faces the difficulty of prematurity and insufficient diversity due to the selection of inappropriate leaders and inefficient evolution strategies. Therefore, to circumvent the rapid loss of population diversity and premature convergence in MOPSO, this paper proposes a knowledge-guided multiobjective particle swarm optimization using fusion learning strategies (KGMOPSO), in which an improved leadership selection strategy based on knowledge utilization is presented to select the appropriate global leader for improving the convergence ability of the algorithm. Furthermore, the similarity between different individuals is dynamically measured to detect the diversity of the current population, and a diversity-enhanced learning strategy is proposed to prevent the rapid loss of population diversity. Additionally, a maximum and minimum crowding distance strategy is employed to obtain excellent nondominated solutions. The proposed KGMOPSO algorithm is evaluated by comparisons with the existing state-of-the-art multiobjective optimization algorithms on the ZDT and DTLZ test instances. Experimental results illustrate that KGMOPSO is superior to other multiobjective algorithms with regard to solution quality and diversity maintenance.



2013 ◽  
Vol 427-429 ◽  
pp. 1934-1938
Author(s):  
Zhong Rong Zhang ◽  
Jin Peng Liu ◽  
Ke De Fei ◽  
Zhao Shan Niu

The aim is to improve the convergence of the algorithm, and increase the population diversity. Adaptively particles of groups fallen into local optimum is adjusted in order to realize global optimal. by judging groups spatial location of concentration and fitness variance. At the same time, the global factors are adjusted dynamically with the action of the current particle fitness. Four typical function optimization problems are drawn into simulation experiment. The results show that the improved particle swarm optimization algorithm is convergent, robust and accurate.



Author(s):  
Kai Yit Kok ◽  
Parvathy Rajendran

This paper presents an enhanced particle swarm optimization (PSO) for the path planning of unmanned aerial vehicles (UAVs). An evolutionary algorithm such as PSO is costly because every application requires different parameter settings to maximize the performance of the analyzed parameters. People generally use the trial-and-error method or refer to the recommended setting from general problems. The former is time consuming, while the latter is usually not the optimum setting for various specific applications. Hence, this study focuses on analyzing the impact of input parameters on the PSO performance in UAV path planning using various complex terrain maps with adequate repetitions to solve the tuning issue. Results show that inertial weight parameter is insignificant, and a 1.4 acceleration coefficient is optimum for UAV path planning. In addition, the population size between 40 and 60 seems to be the optimum setting based on the case studies.



2013 ◽  
Vol 343 ◽  
pp. 43-49 ◽  
Author(s):  
Jia Ruey Chang

Optimal prioritization of maintenance and rehabilitation (M&R) activities for pavement sections can enable significant time and cost-savings. In this study, we used the particle swarm optimization (PSO) method to achieve optimal prioritization of 135 pavement sections based on eight pavement condition parameters. The parameters included standard deviation (SD) for smoothness, rutting, deflections, cracking, pothole, bleeding, patching, and shoving. SD for smoothness, rutting, and deflections were inspected using instruments, while cracking, pothole, bleeding, patching, and shoving were surveyed visually. The PSO method was used to quickly calculate the synthetic pavement condition for each pavement section and then obtain the optimal prioritization of pavement sections. With this approach, pavement engineers are able to efficiently perform appropriate and timely M&R activities for pavement sections, according to their priority. This study provides an alternative solution to current approaches for prioritization of pavement sections.



Author(s):  
Jiarui Zhou ◽  
Junshan Yang ◽  
Ling Lin ◽  
Zexuan Zhu ◽  
Zhen Ji

Particle swarm optimization (PSO) is a swarm intelligence algorithm well known for its simplicity and high efficiency on various problems. Conventional PSO suffers from premature convergence due to the rapid convergence speed and lack of population diversity. It is easy to get trapped in local optima. For this reason, improvements are made to detect stagnation during the optimization and reactivate the swarm to search towards the global optimum. This chapter imposes the reflecting bound-handling scheme and von Neumann topology on PSO to increase the population diversity. A novel crown jewel defense (CJD) strategy is introduced to restart the swarm when it is trapped in a local optimum region. The resultant algorithm named LCJDPSO-rfl is tested on a group of unimodal and multimodal benchmark functions with rotation and shifting. Experimental results suggest that the LCJDPSO-rfl outperforms state-of-the-art PSO variants on most of the functions.



Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2211
Author(s):  
Na Wei ◽  
Mingyong Liu ◽  
Weibin Cheng

This paper proposes a multi-objective decision-making model for underwater countermeasures based on a multi-objective decision theory and solves it using the multi-objective discrete particle swarm optimization (MODPSO) algorithm. Existing decision-making models are based on fully allocated assignment without considering the weapon consumption and communication delay, which does not conform to the actual naval combat process. The minimum opponent residual threat probability and minimum own-weapon consumption are selected as two functions of the multi-objective decision-making model in this paper. Considering the impact of the communication delay, the multi-objective discrete particle swarm optimization (MODPSO) algorithm is proposed to obtain the optimal solution of the distribution scheme with different weapon consumptions. The algorithm adopts the natural number coding method, and the particle corresponds to the confrontation strategy. The simulation result shows that underwater communication delay impacts the decision-making selection. It verifies the effectiveness of the proposed model and the proposed multi-objective discrete particle swarm optimization algorithm.



Author(s):  
Shoubao Su ◽  
Zhaorui Zhai ◽  
Chishe Wang ◽  
Kaimeng Ding

The traditional fractional-order particle swarm optimization (FOPSO) algorithm depends on the fractional order [Formula: see text], and it is easy to fall into local optimum. To overcome these disadvantages, a novel perspective with PID gains tuning procedure is proposed by combining the time factor with FOPSO, i.e. a new fractional-order particle swarm optimization called TFFV-PSO, which reduces the dependence on the fractional order to enhance the ability of particles to escape from local optimums. According to its influence on the performance of the algorithm, the time factor is varied with population diversity parameters to balance the exploration and exploitation capabilities of the particle swarm, so as to adjust the convergence speed of the algorithm, then it follows that a better convergence performance will be obtained. The improved method is tested on several benchmark functions and applied to tune the PID controller parameters. The experimental results and the comparison with previous other methods show that our proposed TFFV-PSO provides an adequate velocity of convergence and a satisfying accuracy, as well as even better robustness.



Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4620 ◽  
Author(s):  
Junfeng Xin ◽  
Jiabao Zhong ◽  
Shixin Li ◽  
Jinlu Sheng ◽  
Ying Cui

Recently, issues of climate change, environment abnormality, individual requirements, and national defense have caused extensive attention to the commercial, scientific, and military development of unmanned surface vehicles (USVs). In order to design high-quality routes for a multi-sensor integrated USV, this work improves the conventional particle swarm optimization algorithm by introducing the greedy mechanism and the 2-opt operation, based on a combination strategy. First, a greedy black box is established for particle initialization, overcoming the randomness of the conventional method and excluding a great number of infeasible solutions. Then the greedy selection strategy and 2-opt operation are adopted together for local searches, to maintain population diversity and eliminate path crossovers. In addition, Monte-Carlo simulations of eight instances are conducted to compare the improved algorithm with other existing algorithms. The computation results indicate that the improved algorithm has the superior performance, with the shortest route and satisfactory robustness, although a fraction of computing efficiency becomes sacrificed. Moreover, the effectiveness and reliability of the improved method is also verified by its multi-sensor-based application to a USV model in real marine environments.



2010 ◽  
Vol 20-23 ◽  
pp. 1280-1285
Author(s):  
Jian Xiang Wei ◽  
Yue Hong Sun

The particle swarm optimization (PSO) algorithm is a new population search strategy, which has exhibited good performance through well-known numerical test problems. However, it is easy to trap into local optimum because the population diversity becomes worse during the evolution. In order to overcome the shortcoming of the PSO, this paper proposes an improved PSO based on the symmetry distribution of the particle space position. From the research of particle movement in high dimensional space, we can see: the more symmetric of the particle distribution, the bigger probability can the algorithm be during converging to the global optimization solution. A novel population diversity function is put forward and an adjustment algorithm is put into the basic PSO. The steps of the proposed algorithm are given in detail. With two typical benchmark functions, the experimental results show the improved PSO has better convergence precision than the basic PSO.



Sign in / Sign up

Export Citation Format

Share Document