scholarly journals Novel Applications of Intuitionistic Fuzzy Digraphs in Decision Support Systems

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Muhammad Akram ◽  
Ather Ashraf ◽  
Mansoor Sarwar

Many problems of practical interest can be modeled and solved by using graph algorithms. In general, graph theory has a wide range of applications in diverse fields. In this paper, the intuitionistic fuzzy organizational and neural network models, intuitionistic fuzzy neurons in medical diagnosis, intuitionistic fuzzy digraphs in vulnerability assessment of gas pipeline networks, and intuitionistic fuzzy digraphs in travel time are presented as examples of intuitionistic fuzzy digraphs in decision support system. We have also designed and implemented the algorithms for these decision support systems.

Author(s):  
Lyalya Bakievna Khuzyatova ◽  
Lenar Ajratovich Galiullin

<p>The questions and problems of the formation of knowledge bases of intelligent man-machine decision support systems are considered. The neuron-fuzzy model used in the work is described. The need for increasing the efficiency of the neuron-fuzzy model in the formation of knowledge bases is being updated. The task is to develop methods and algorithms for presetting and optimizing the parameters of a fuzzy neural network. To solve difficult formalized tasks, it is necessary to develop decision support systems - expert systems based on a knowledge base. ES developers are constantly faced with the problems of “extraction” and formalization of knowledge, as well as the search for new ways to obtain it. To do this, use the extraction, acquisition and formation of knowledge. Currently, the formation of knowledge bases is relevant for the creation of hybrid technologies - fuzzy neural networks that combine the advantages of neural network models and fuzzy systems. The analysis of the efficiency of the fuzzy neural network carried out in the work showed that the quality of training of the NN largely depends on the choice of the number of fuzzy granules for input drugs. In addition, to use fuzzy information formalized by the mathematical apparatus of fuzzy logic, procedures are required for selecting optimal forms and presetting the parameters of the corresponding membership functions (MF).</p>


Author(s):  
R. Rousseau ◽  
S. Tremblay ◽  
D. Lafond ◽  
F. Vachon ◽  
R. Breton

Temporal awareness is key to successful decision making in a wide range of command and control situations, yet little explicit support to maintaining temporal awareness is provided by Decision Support Systems (DSS) for time-critical decisions. In the context of simulated weapon-target scheduling, the present study compared the decision support gained from two display formats: typical geospatial display and temporal display. The results demonstrated that the temporal display facilitates scheduling performance though its beneficial impact seems to require greater familiarization.


1996 ◽  
Vol 35 (01) ◽  
pp. 1-4 ◽  
Author(s):  
F. T. de Dombal

AbstractThis paper deals with a major difficulty and potential limiting factor in present-day decision support - that of assigning precise value to an item (or group of items) of clinical information. Historical determinist descriptive thinking has been challenged by current concepts of uncertainty and probability, but neither view is adequate. Four equations are proposed outlining factors which affect the value of clinical information, which explain some previously puzzling observations concerning decision support. It is suggested that without accommodation of these concepts, computer-aided decision support cannot progress further, but if they can be accommodated in future programs, the implications may be profound.


1993 ◽  
Vol 32 (01) ◽  
pp. 12-13 ◽  
Author(s):  
M. A. Musen

Abstract:Response to Heathfield HA, Wyatt J. Philosophies for the design and development of clinical decision-support systems. Meth Inform Med 1993; 32: 1-8.


2006 ◽  
Vol 45 (05) ◽  
pp. 523-527 ◽  
Author(s):  
A. Abu-Hanna ◽  
B. Nannings

Summary Objectives: Decision Support Telemedicine Systems (DSTS) are at the intersection of two disciplines: telemedicine and clinical decision support systems (CDSS). The objective of this paper is to provide a set of characterizing properties for DSTSs. This characterizing property set (CPS) can be used for typing, classifying and clustering DSTSs. Methods: We performed a systematic keyword-based literature search to identify candidate-characterizing properties. We selected a subset of candidates and refined them by assessing their potential in order to obtain the CPS. Results: The CPS consists of 14 properties, which can be used for the uniform description and typing of applications of DSTSs. The properties are grouped in three categories that we refer to as the problem dimension, process dimension, and system dimension. We provide CPS instantiations for three prototypical applications. Conclusions: The CPS includes important properties for typing DSTSs, focusing on aspects of communication for the telemedicine part and on aspects of decisionmaking for the CDSS part. The CPS provides users with tools for uniformly describing DSTSs.


Sign in / Sign up

Export Citation Format

Share Document