scholarly journals Dirac Particle for the Position Dependent Mass in the Generalized Asymmetric Woods-Saxon Potential

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Soner Alpdoğan ◽  
Ali Havare

The one-dimensional Dirac equation with position dependent mass in the generalized asymmetric Woods-Saxon potential is solved in terms of the hypergeometric functions. The transmission and reflection coefficients are obtained by considering the one-dimensional electric current density for the Dirac particle and the equation describing the bound states is found by utilizing the continuity conditions of the obtained wave function. Also, by using the generalized asymmetric Woods-Saxon potential solutions, the scattering states are found out without making calculation for the Woods-Saxon, Hulthen, cusp potentials, and so forth, which are derived from the generalized asymmetric Woods-Saxon potential and the conditions describing transmission resonances and supercriticality are achieved. At the same time, the data obtained in this work are compared with the results achieved in earlier studies and are observed to be consistent.

2016 ◽  
Vol 131 (11) ◽  
Author(s):  
M. Chabab ◽  
A. El Batoul ◽  
H. Hassanabadi ◽  
M. Oulne ◽  
S. Zare

2020 ◽  
Vol 35 (23) ◽  
pp. 2050140
Author(s):  
Eduardo López ◽  
Clara Rojas

We solve the one-dimensional time-independent Klein–Gordon equation in the presence of a smooth potential well. The bound state solutions are given in terms of the Whittaker [Formula: see text] function, and the antiparticle bound state is discussed in terms of potential parameters.


2016 ◽  
Vol 69 (11) ◽  
pp. 1619-1624 ◽  
Author(s):  
M. Chabab ◽  
A. El Batoul ◽  
M. Oulne ◽  
H. Hassanabadi ◽  
S. Zare

2020 ◽  
Vol 98 (10) ◽  
pp. 939-943
Author(s):  
Eduardo López ◽  
Clara Rojas

We present a study of the one-dimensional Klein–Gordon equation by a smooth barrier. The scattering solutions are given in terms of the Whittaker Mκ,μ(x) function. The reflection and transmission coefficients are calculated in terms of the energy, the height, and the smoothness of the potential barrier. For any value of the smoothness parameter we observed transmission resonances.


2002 ◽  
Vol 17 (31) ◽  
pp. 2049-2055 ◽  
Author(s):  
B. A. KAGALI ◽  
NAGALAKSHMI A. RAO ◽  
VIJAY SIVRAMKRISHNA

In this paper we illustrate the existence of genuine bound states for a Dirac particle interacting with a scalar screened Coulomb potential in a 1 + 1 dimension. In contrast to the bare Coulomb potential, the screened Coulomb potential can bind both spin-zero and spin-1/2 particles in the scalar prescription.


2018 ◽  
Vol 15 (08) ◽  
pp. 1850135 ◽  
Author(s):  
Fassari Silvestro ◽  
Rinaldi Fabio ◽  
Viaggiu Stefano

In this paper, we exploit the technique used in [Albeverio and Nizhnik, On the number of negative eigenvalues of one-dimensional Schrödinger operator with point interactions, Lett. Math. Phys. 65 (2003) 27; Albeverio, Gesztesy, Hoegh-Krohn and Holden, Solvable Models in Quantum Mechanics (second edition with an appendix by P. Exner, AMS Chelsea Series 2004); Albeverio and Kurasov, Singular Perturbations of Differential Operators: Solvable Type Operators (Cambridge University Press, 2000); Fassari and Rinaldi, On the spectrum of the Schrödinger–Hamiltonian with a particular configuration of three one-dimensional point interactions, Rep. Math. Phys. 3 (2009) 367; Fassari and Rinaldi, On the spectrum of the Schrödinger–Hamiltonian of the one-dimensional harmonic oscillator perturbed by two identical attractive point interactions, Rep. Math. Phys. 3 (2012) 353; Albeverio, Fassari and Rinaldi, The Hamiltonian of the harmonic oscillator with an attractive-interaction centered at the origin as approximated by the one with a triple of attractive-interactions, J. Phys. A: Math. Theor. 49 (2016) 025302; Albeverio, Fassari and Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive [Formula: see text]-impurities symmetrically situated around the origin II, Nanosyst. Phys. Chem. Math. 7(5) (2016) 803; Albeverio, Fassari and Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive [Formula: see text]-impurities symmetrically situated around the origin, Nanosyst. Phys. Chem. Math. 7(2) (2016) 268] to deal with delta interactions in a rigorous way in a curved spacetime represented by a cosmic string along the [Formula: see text] axis. This mathematical machinery is applied in order to study the discrete spectrum of a point-mass particle confined in an infinitely long cylinder with a conical defect on the [Formula: see text] axis and perturbed by two identical attractive delta interactions symmetrically situated around the origin. We derive a suitable approximate formula for the total energy. As a consequence, we found the existence of a mixing of states with positive or zero energy with the ones with negative energy (bound states). This mixture depends on the radius [Formula: see text] of the trapping cylinder. The number of quantum bound states is an increasing function of the radius [Formula: see text]. It is also interesting to note the presence of states with zero total energy (quasi free states). Apart from the gravitational background, the model presented in this paper is of interest in the context of nanophysics and graphene modeling. In particular, the graphene with double layer in this framework, with the double layer given by the aforementioned delta interactions and the string on the [Formula: see text]-axis modeling topological defects connecting the two layers. As a consequence of these setups, we obtain the usual mixture of positive and negative bound states present in the graphene literature.


Sign in / Sign up

Export Citation Format

Share Document