scholarly journals Analysis of Metal Contents in Portland Type V and MTA-Based Cements

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maura Cristiane Gonçales Orçati Dorileo ◽  
Matheus Coelho Bandeca ◽  
Fábio Luis Miranda Pedro ◽  
Luiz Evaristo Ricci Volpato ◽  
Orlando Aguirre Guedes ◽  
...  

The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese(P<0.05). Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion.

2020 ◽  
Vol 1001 ◽  
pp. 139-144
Author(s):  
Ying Li ◽  
Ben Tao Li ◽  
Guang Yu Sun ◽  
Hui Huang ◽  
Chen Gong ◽  
...  

The influence of different acidic medium, including hydrochloric acid, nitric acid and perchloric acid on the absorbance of sodium by flame atomic absorption spectrometry was studied. The results showed that the effects of acidic medium and water on the determination of sodium were as follows: hydrochloric acid > perchloric acid > nitric acid > water. Acid effect changed with the increase of acid concentration, however, the absorbance value of sodium element decreased when the concentration of acid was higher than 1%~2%. This effect was more obvious for high content of sodium. The detection limits, repeatability and recovery of the samples under the three acidic medium were compared. The optimum acid conditions were determined and the sensitivity of the method was improved.


Author(s):  
Peter Wothers

This chapter looks at the elements from the penultimate group of the periodic table—the halogens (‘salt-formers’). We shall see that the first of these elements was discovered by Scheele during his investigations of the mineral pyrolusite. Lavoisier knew of the element but he failed to recognize it as such since he was convinced the gas had to contain oxygen and so must be a compound. It was left to Davy to prove that this was not so, which led to the English chemist naming this element that had been discovered (but not properly named) over thirty years before by the great Scheele. Davy’s choice was to influence the names given to all the members of this group, including the most recent member named in 2016. There are three common acids known as mineral acids, since they may all be obtained by heating combinations of certain minerals. Their modern names are nitric acid, sulfuric acid, and hydrochloric acid. Of these three, hydrochloric was probably the last to be discovered. Nitric and sulfuric acids were obtained in the thirteenth or early fourteenth centuries, but the earliest unambiguous preparation of relatively pure hydrochloric acid is from a hundred years later, in a manuscript from Bologna which translates as Secrets for Colour. It gives a curious recipe for a water to soften bones: ‘Take common salt and Roman vitriol in equal quantities, and grind them very well together; then distil them through an alembic, and keep the distilled water in a vessel well closed.’ As we saw in Chapter 3, ‘Roman vitriol’ is a hydrated metal sulfate, probably iron or copper sulfate; its mixture with salt, when heated, produces water and hydrogen chloride, which together form the acid solution. Later texts from the sixteenth and seventeenth centuries include similar methods to prepare this so-called spirit of salt, or ‘oyle of salt’. The first mentioned use, to soften bones, is indeed best achieved with hydrochloric acid, which readily dissolves the minerals from bone to leave only the organic matter largely intact. Leave a chicken bone in dilute hydrochloric acid for a few hours, and it may easily be bent without breaking.


1988 ◽  
Vol 34 (9) ◽  
pp. 1908-1910 ◽  
Author(s):  
J Pettersson ◽  
L Hansson ◽  
U Ornemark ◽  
A Olin

Abstract A digestion procedure involving nitric acid, magnesium nitrate hexahydrate, and hydrochloric acid suffices for selenium determinations in whole blood, serum, and urine by molecular fluorescence spectrometry. To test the accuracy of the method we compared the results with those from hydride-generation atomic absorption spectrometry, and we also analyzed reference materials.


1979 ◽  
Vol 44 (7) ◽  
pp. 2024-2031 ◽  
Author(s):  
František Vláčil ◽  
Huynh Dang Khanh

The dependence of the distribution ratio of the metal on the concentration of hydrochloric of nitric acid was examined for Fe, Co, Ni and Cu extraction with 0.05M solution of dibenzylsulfoxide in toluene. Iron is extracted considerably more than the other metals, and is better extracted from hydrochloric acid than from nitric acid. The separation factor αFe/M (for 8M-HCl) is of the order of 104; this is not sufficient for a separation of trace quantities of iron from Co, Ni and Cu, but even at lower concentrations of HCl (e.g., 5M) the values is high enough for extraction chromatographic separation. The composition of the iron solvate extracted from HCl or LiCl medium was determined to be HFeCl4.2 B (B = dibenzyl sulfoxide).


Sign in / Sign up

Export Citation Format

Share Document