scholarly journals Planetary Gearbox Vibration Signal Characteristics Analysis and Fault Diagnosis

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Miao ◽  
Qinghua Zhou

Planetary gearboxes are widely used in helicopters, wind turbines, mining machinery, and so forth. The structure and motion type of a planetary gearbox are more complex in comparison with a fixed-shaft one, which makes condition monitoring and fault diagnosis of planetary gearbox a challenging issue in practical applications. In order to understand the fundamental nature of planetary gearbox vibration, this paper conducts an investigation on vibration characteristics of a single-stage planetary gearbox. Assuming that the gearbox and the sensor revolve inversely at the speed of planet carrier, the problem can be transformed into two easier parts: research on fixed-shaft gearbox signal model and research on influence of sensor spinning. Based on this assumption, a vibration signal model of planetary gearbox is obtained. Experimental data are used to validate the model.

2021 ◽  
Vol 2068 (1) ◽  
pp. 012034
Author(s):  
Hai Zeng ◽  
Ning Zeng ◽  
Jin Han ◽  
Yan Ding

Abstract Engine vibration signals include strong noise and non-stationary signals. By the time domain signal processing approach, it is hard to extract the failure features of engine vibration signals, so it is hard to identify engine failures. For improving the success rate of engine failure detection, an engine angle domain vibration signal model is established and an engine fault detection approach based on the signal model is proposed. The angle domain signal model reveals the modulation feature of the engine angular signal. The engine fault diagnosis approach based on the angle domain signal model involves equal angle sampling and envelope analysis of engine vibration signals. The engine bench test verifies the effectiveness of the engine fault diagnosis approach based on the angle domain signal model. In addition, this approach indicates a new path of engine fault diagnosis and detection.


Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Weigang Wen ◽  
Robert X. Gao ◽  
Weidong Cheng

The important issue in planetary gear fault diagnosis is to extract the dependable fault characteristics from the noisy vibration signal of planetary gearbox. To address this critical problem, an envelope manifold demodulation method is proposed for planetary gear fault detection in the paper. This method combines complex wavelet, manifold learning, and frequency spectrogram to implement planetary gear fault characteristic extraction. The vibration signal of planetary gear is demodulated by wavelet enveloping. The envelope energy is adopted as an indicator to select meshing frequency band. Manifold learning is utilized to reduce the effect of noise within meshing frequency band. The fault characteristic frequency of the planetary gear is shown by spectrogram. The planetary gearbox model and test rig are established and experiments with planet gear faults are conducted for verification. All results of experiment analysis demonstrate its effectiveness and reliability.


2014 ◽  
Vol 940 ◽  
pp. 136-139
Author(s):  
Ren Bin Zhou ◽  
Yong Feng Zhang ◽  
Jie Min Yang ◽  
Feng Ling

As a universal component connection and power transmission gear box, is widely used in the modern industrial equipment, but also an easy failure parts, has a great influence on the running state of the working performance of the whole machine. This paper first analyzes the gear box fault form and characteristics, the gear box fault diagnosis method based on vibration signal analysis, and analysis of the vibration signal processing method for gear vibration signal analysis in time domain, including parameters, resonance demodulation method and cepstrum analysis method. Then using Visual C + + language and data acquisition card for real-time acquisition of gearbox vibration data software, including parameter setting, data acquisition module, signal real-time display module and data storage module. The data acquisition program is developed, the actual acquisition of gearbox vibration data of gear fault and bearing fault, and analyzed.


2013 ◽  
Vol 347-350 ◽  
pp. 430-433
Author(s):  
Wen Bin Zhang ◽  
Jia Xing Zhu ◽  
Ya Song Pu ◽  
Yan Jie Zhou

In this paper, a new comprehensive gearbox fault diagnosis method was proposed based on rank-order morphological filter, ensemble empirical mode decomposition (EEMD) and grey incidence. Firstly, the rank-order morphological filter was defined and the line structure element was selected for rank-order morphological filter to de-noise the original acceleration vibration signal. Secondly, de-noised gearbox vibration signals were decomposed into a finite number of stationary intrinsic mode functions (IMF) and some IMFs containing the most dominant fault information were calculated the energy distribution. Finally, due to the grey incidence has good classify capacity for small sample pattern identification; these energy distributions could serve as the feature vectors, the grey incidence of different gearbox vibration signals was calculated to identify the fault pattern and condition. Practical results show that the proposed method can be used in gear fault diagnosis effectively.


2017 ◽  
Vol 24 (15) ◽  
pp. 3338-3347 ◽  
Author(s):  
Jianhua Cai ◽  
Xiaoqin Li

Gears are the most important transmission modes used in mining machinery, and gear faults can cause serious damage and even accidents. In the work process, vibration signals are influenced not only by friction, nonlinear stiffness, and nonstationary loads, but also by strong noise. It is difficult to separate the useful information from the noise, which brings some trouble to the fault diagnosis of mining machinery gears. The generalized S transform has the advantages of the short time Fourier transform and wavelet transform and is reversible. The time–frequency energy distribution of the gear vibration signal can be accurately presented by the generalized S transform, and a time–frequency filter factor can be constructed to filter the vibration signal in the time–frequency domain. These characteristics play an important role when the generalized S transform is used to remove the noise in the time–frequency domain. In this paper, a new gear fault diagnosis based on the time–frequency domain de-noising is proposed that uses the generalized S transform. The application principle, method steps, and evaluation index of the method are presented, and a wavelet soft-threshold filtering method is implemented for comparison with the proposed approach. The effectiveness of the proposed method is demonstrated by numerical simulation and experimental investigation of a gear with a tooth crack. Our analyses also indicate that the proposed method can be used for fault diagnosis of mining machinery gears.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fengbiao Wu ◽  
Lifeng Ma ◽  
Qianqian Zhang ◽  
Guanghui Zhao ◽  
Pengtao Liu

Gyratory crusher is a kind of commonly used mining machinery. Because of its heavy workload and complex working environment, it is prone to failure and low reliability. In order to solve this problem, this paper proposes a fault diagnosis method of the gyratory crusher based on fast entropy multistage VMD, which is used to quickly and accurately find the possible fault problems of the gyratory crusher. This method mainly extracts the vibration signal by combining fast entropy and variational mode decomposition, so as to analyze the components of the vibration signal. Among them, fast entropy is used to quickly determine the number of modes in the signal spectrum and the bandwidth occupied by the modes. The extracted parameters can be converted into the input parameters of VMD. VMD can accurately extract the modal components in the signal by inputting the number of modes and related parameters. Due to the differences between modes, using the same parameters to extract the modes often leads to inaccurate results. Therefore, the concept of multilevel VMD is proposed. The parameters of different modes are determined by fast entropy. The modes in the signals are separated and extracted with different parameters so that different signal modes can be accurately extracted. In order to verify the accuracy of the method, this paper uses the data collected from the rotary crusher to test, and the results show that the proposed FE method can quickly and effectively extract the fault components in the vibration signal.


2018 ◽  
Vol 234 ◽  
pp. 02002 ◽  
Author(s):  
Jan Furch ◽  
Cao Vu Tran

This paper focuses on creating a virtual model of mechanical gearbox used in medium-sized terrain vehicle using MSC.Adams software. This software is regarded as the most common and effective tool to simulate the gearbox as multibody system and to record and analyse the vibration signal from the gearbox. The paper makes an overview of modelling and simulation and performs an analysis with frequency spectrum. The paper demonstrates that it is possible to simulate vibration signals through the model of the gearbox created in 3D CAD software and then analyse in multi-body dynamics software MSC.Adams. Successful application of the virtual model not only help us decrease the cost of design work, but also help us identify the patterns of the vibration signal and the relations between the signal and the technical condition of the gearbox. The goal is to create a virtual model of a mechanical gearbox. In MSC.Adams, the vibration values of the rotating components can be detected in different gears. These values are then analysed and evaluated. The result is a simulation of fault states and identification of vibration frequencies for practical applications.


Sign in / Sign up

Export Citation Format

Share Document