scholarly journals Shrinkage Behaviour of Fibre Reinforced Concrete with Recycled Tyre Polymer Fibres

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Marijana Serdar ◽  
Ana Baričević ◽  
Marija Jelčić Rukavina ◽  
Martina Pezer ◽  
Dubravka Bjegović ◽  
...  

Different types of fibres are often used in concrete to prevent microcracking due to shrinkage, and polypropylene fibres are among the most often used ones. If not prevented, microcracks can lead to the development of larger cracks as drying shrinkage occurs, enabling penetration of aggressive substances from the environment and reducing durability of concrete structures. The hypothesis of the present research is that polypropylene fibres, used in concrete for controlling formation of microcracks due to shrinkage, can be replaced with recycled polymer fibres obtained from end-of-life tyres. To test the hypothesis, concrete mixtures containing polypropylene fibres and recycled tyre polymer fibres were prepared and tested. Experimental programme focused on autogenous, free, and restrained shrinkage. It was shown that PP fibres can be substituted with higher amount of recycled tyre polymer fibres obtaining concrete with similar shrinkage behaviour. The results indicate promising possibilities of using recycled tyre polymer fibres in concrete products. At the same time, such applications would contribute to solving the problem of waste tyre disposal.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Amin Noushini ◽  
Kirk Vessalas ◽  
Garo Arabian ◽  
Bijan Samali

The current study assesses the drying shrinkage behaviour of polyvinyl alcohol fibre reinforced concrete (PVA-FRC) containing short-length (6 mm) and long-length (12 mm) uncoated monofilament PVA fibres at 0.125%, 0.25%, 0.375%, and 0.5% volumetric fractions. Fly ash is also used as a partial replacement of Portland cement in all mixes. PVA-FRC mixes have been compared to length change of control concrete (devoid of fibres) at 3 storage intervals: early-age (0–7 days), short-term (0–28 days), and long-term (28–112 days) intervals. The shrinkage results of FRC and control concrete up to 112 days indicated that all PVA-FRC mixes exhibited higher drying shrinkage than control. The shrinkage exhibited by PVA-FRC mixes ranged from 449 to 480 microstrain, where this value was only 427 microstrain in the case of control. In addition, the longer fibres exhibited higher mass loss, thus potentially contributing to higher shrinkage.


1990 ◽  
Vol 211 ◽  
Author(s):  
Miguel A. Sanjuan ◽  
A. Moragues ◽  
B. Bacle ◽  
C. Andrade

AbstractThe permeability of concrete to gases is of direct importance to the durability of concrete structures, because of carbon dioxide flowing through the concrete favour lime carbonation and reinforcing steel corrosion.Mortar with and without polypropylene fibres having water/cementitious ratios of 0.30, 0.35 and 0.40 and a cement/sand ratio of 1/1 were studied. Polypropylene dosage varied from 0.1 to 0.3% by volume of cement.The characterization of mortar permeability was made using cylindrical shaped samples (3 cm height and 15 cm diameter). These specimens were 28 days cured and then dried before the test.The addition of fibres results in a decrease of air permeability. Variation of the water/cement ratio is of lesser importance than fiber addition.


2019 ◽  
Vol 5 ◽  
pp. 153-164
Author(s):  
Sagar Bista ◽  
Sagar Airee ◽  
Shikshya Dhital ◽  
Srijan Poudel ◽  
Sujan Neupane

Concrete is weak in tension, hence some measures must be adopted to overcome this deficiency as well as to enhance physical and other mechanical properties but in more convenient and economical method. Through many research from the past, it has been observed that addition of different types of fibres has been more effective for this purpose. This report presents the work undertaken to study the effect of steel and hay fibre on normal cement concrete of M-15 Grade on the basis of its mechanical properties which include compressive and tensile strength test and slump test as well. Although hay fibres are abundantly available in Nepal, no research have been popularly conducted here regarding the use of hay fibres in concrete and the changes brought by it on concrete’s mechanical properties. Experiments were conducted on concrete cubes and cylinders of standard sizes with addition of various percentages of steel and hay fibres i.e. 0.5%, 1% and 1.5% by weight of cement and results were compared with those of normal cement concrete of M-15 Grade. For each percentage of steel and hay fibre added in concrete, six cubes and six cylinders were tested for their respective mechanical properties at curing periods of 14 and 28 days. The results obtained show us that the optimum content of fibre to be added to M-15 grade of concrete is 0.5% steel fibre for compression and 0.5% hay fibre content for tension by weight of cement. Also, addition of steel and hay fibres enhanced the binding properties, micro cracking control and imparted ductility. In addition to this, two residential buildings were modeled in SAP software, one with normal concrete and other with concrete containing 0.5% steel fibre. Difference in reinforcement requirements in each building was computed from SAP analysis and it was found that 489.736 Kg of reinforcement could be substituted by 158.036 kg of steel fibres and decrease in materials cost of building with 0.5% steel fibre reinforced concrete was found to be Rs. 32,100.


2003 ◽  
Vol 9 (4) ◽  
pp. 271-279 ◽  
Author(s):  
Hau-yan Leung ◽  
Ramapillai V. Balendran

This paper summarises experimental results of some fresh concrete tests. Polypropylene fibres were added to the concrete mix to produce fibre reinforced concrete. Pozzolanic materials, including pulverised fly ash and silica fume, were used as partial replacement of cement, and their effects on the fresh fibre concrete were reported. Test results showed that the polypropylene fibre reduced the concrete workability significantly by thixotropic effect and decreased the setting time. Substitution of pozzolans also greatly affected the properties. The presence of fly ash increased the workability and setting time but in the presence of silica fume a reverse trend was observed. Empirical equations were proposed.


2000 ◽  
Vol 27 (4) ◽  
pp. 774-784 ◽  
Author(s):  
Benoît Bissonnette ◽  
Yves Therrien ◽  
Richard Pleau ◽  
Michel Pigeon ◽  
François Saucier

This paper presents the results of an investigation aimed at establishing if multiple cracking can be an intrinsic property of steel fibre reinforced concrete (SFRC) in the hardened state and identifying the conditions to obtain it systematically. For this purpose, uniaxial restrained shrinkage tests and tensile tests were performed on large-scale SFRC specimens. The parameters studied in the experimental program were the fibre content (0-100 kg/m3), the fibre geometry, and the water to cement ratio of the concrete matrix (w/c = 0.40-0.80). The test results tend to indicate that multiple cracking is not a property of SFRC as such, at least within the range of concrete matrices and fibre contents investigated and that were intended to be compatible with practical considerations. While it does not mean that fibre reinforcement is not effective in terms of crack control, it is important to be careful in the analysis of test results where the effect of the restraining and exposure conditions might have been significant.Key words: cracking, drying shrinkage, fibre-reinforced concrete, multiple cracking, repairs, restrained shrinkage, steel fibres, tension.


2020 ◽  
Vol 236 ◽  
pp. 117549 ◽  
Author(s):  
Cesare Signorini ◽  
Antonella Sola ◽  
Beatrice Malchiodi ◽  
Andrea Nobili ◽  
Andrea Gatto

2016 ◽  
Vol 113 ◽  
pp. 328-334 ◽  
Author(s):  
Messaoud Saidani ◽  
Danah Saraireh ◽  
Michael Gerges

2000 ◽  
Vol 27 (2) ◽  
pp. 364-372 ◽  
Author(s):  
Giuseppe Campione ◽  
Sidney Mindess ◽  
Nunzio Scibilia ◽  
Gaetano Zingone

The strength of hollow circular steel sections filled with normal-strength plain concrete and fibre-reinforced concrete (FRC) was evaluated. First, the case of centrally loaded composite members was considered and the bearing capacity of the columns was calculated using the methods proposed by a European code (EC4) and an American code (LRDF). Some expressions in these codes were validated for the case of FRC by adapting experimental data to introduce the mechanical properties of the FRC. To do this, experimental results of standard tests on FRC (compression and splitting tension) were used as well as data on circular steel columns filled with 2% FRC by volume with different types of fibres (steel, polyolefin). Second, the moment - axial force diagrams for composite members, taking into account the residual tensile strength of FRC, were calculated, showing the advantages of using FRC compared with plain concrete for filling hollow steel sections.Key words: fibre-reinforced concrete, hollow steel columns, composite members, steel fibres, polyolefin fibres.


Sign in / Sign up

Export Citation Format

Share Document