scholarly journals A Study of Image Classification of Remote Sensing Based on Back-Propagation Neural Network with Extended Delta Bar Delta

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shi Liang Zhang ◽  
Ting Cheng Chang

This paper proposes a model to extract feature information quickly and accurately identifying what cannot be achieved through traditional methods of remote sensing image classification. First, process the selected Landsat-8 remote sensing data, including radiometric calibration, geometric correction, optimal band combination, and image cropping. Add the processed remote sensing image to the normalized geographic auxiliary information, digital elevation model (DEM), and normalized difference vegetation index (NDVI), working together to build a neural network that consists of three levels based on the structure of back-propagation neural and extended delta bar delta (BPN-EDBD) algorithm, determining the parameters of the neural network to constitute a good classification model. Then determine classification and standards via field surveys and related geographic information; select training samples BPN-EDBD for algorithm learning and training and, if necessary, revise and improve its parameters using the BPN-EDBD classification algorithm to classify the remote sensing image after pretreatment and DEM data and NDVI as input parameters and output classification results, and run accuracy assessment. Finally, compare with traditional supervised classification algorithms, while adding different auxiliary geographic information to compare classification results to study the advantages and disadvantages of BPN-EDBD classification algorithm.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Haisheng Song ◽  
Ruisong Xu ◽  
Yueliang Ma ◽  
Gaofei Li

The back propagation neural network (BPNN) algorithm can be used as a supervised classification in the processing of remote sensing image classification. But its defects are obvious: falling into the local minimum value easily, slow convergence speed, and being difficult to determine intermediate hidden layer nodes. Genetic algorithm (GA) has the advantages of global optimization and being not easy to fall into local minimum value, but it has the disadvantage of poor local searching capability. This paper uses GA to generate the initial structure of BPNN. Then, the stable, efficient, and fast BP classification network is gotten through making fine adjustments on the improved BP algorithm. Finally, we use the hybrid algorithm to execute classification on remote sensing image and compare it with the improved BP algorithm and traditional maximum likelihood classification (MLC) algorithm. Results of experiments show that the hybrid algorithm outperforms improved BP algorithm and MLC algorithm.


Sign in / Sign up

Export Citation Format

Share Document