An Improved Bayesian Structural Identification Using the First Two Derivatives of Log-Likelihood Measure
The posterior density of structural parameters conditioned by the measurement is obtained by a differential evolution adaptive Metropolis algorithm (DREAM). The surface of the formal log-likelihood measure is studied considering the uncertainty of measurement error to illustrate the problem of equifinality. To overcome the problem of equifinality, the first two derivatives of the log-likelihood measure are proposed to formulate a new informal likelihood measure for the sake of improving the accuracy of the estimator. Moreover, the proposed measure also reduces the standard deviation (uncertain range) of the posterior samples. The benefit of the proposed approach is demonstrated by simulations on identifying the structural parameters with limit output data and noise polluted measurements.