scholarly journals The Dynamics of a Diffusive Nutrient-Algae Model Based upon the Sanyang Wetland

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Yi Wang ◽  
Min Zhao ◽  
Chuanjun Dai ◽  
Yunli Deng

The stability and spatiotemporal dynamics of a diffusive nutrient-algae model are investigated mathematically and numerically. Mathematical theoretical studies have considered the positivity and boundedness of the solution and the existence, local stability, and global stability of equilibria. Turing instability has also been studied. Furthermore, a series of numerical simulations was performed and a complex Turing pattern found. These results indicate that the nutrient input rate has an important influence on the density and spatial distribution of algae populations. This may help us to obtain a better understanding of the interactions of nutrient and algae and to investigate plankton dynamics in aquatic ecosystems.

2021 ◽  
Author(s):  
Qing Hu ◽  
Jianwei Shen

Abstract Time delays can induce the loss of stability and degradation of performance. In this paper, the pattern dynamics of a prey-predator network with diffusion and delay are investigated, where the inhomogeneous distribution of species in space can be viewed as a random network, and delay can affect the stability of the network system. Our results show that time delay can induce the emergence of Hopf and Turing bifurcations, which are independent of the network, and the conditions of bifurcation are derived by linear stability analysis. Moreover, we find that the Turing pattern can be related to the network connection probability. The Turing instability region involving delay and network connection probability is obtained. Finally, the numerical simulation verifies our results.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Satish Kumar Tiwari ◽  
Ravikant Singh ◽  
Nilesh Kumar Thakur

AbstractWe propose a model for tropic interaction among the infochemical-producing phytoplankton and non-info chemical-producing phytoplankton and microzooplankton. Volatile information-conveying chemicals (infochemicals) released by phytoplankton play an important role in the food webs of marine ecosystems. Microzooplankton is an ecologically important grazer of phytoplankton for coexistence of a large number of phytoplankton species. Here, we discuss how information transferred by dimethyl sulfide shapes the interaction of phytoplankton. Phytoplankton deterrents may lead to propagation of IPP bloom. The interaction between IPP and microzooplankton follows the Beddington–DeAngelis-type functional response. Analytically, we discuss boundedness, stability and Turing instability of the model system. We perform numerical simulation for temporal (ODE model) as well as a spatial model system. Our numerical investigation shows that microzooplankton grazing refuse of IPP leads to oscillatory dynamics. Increasing diffusion coefficient of microzooplankton shows Turing instability. Time evolution also plays an important role in the stability of system dynamics. The results obtained in this paper are useful to understand the dominance of algal bloom in coastal and estuarine ecosystem.


2021 ◽  
Vol 31 (08) ◽  
pp. 2150143
Author(s):  
Zunxian Li ◽  
Chengyi Xia

In this paper, we explore the dynamical behaviors of the 1D two-grid coupled cellular neural networks. Assuming the boundary conditions of zero-flux type, the stability of the zero equilibrium is discussed by analyzing the relevant eigenvalue problem with the aid of the decoupling method, and the conditions for the occurrence of Turing instability and Hopf bifurcation at the zero equilibrium are derived. Furthermore, the approximate expressions of the bifurcating periodic solutions are also obtained by using the Hopf bifurcation theorem. Finally, numerical simulations are provided to demonstrate the theoretical results.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Anna Aviñó ◽  
Elena Cubero ◽  
Raimundo Gargallo ◽  
Carlos González ◽  
Modesto Orozco ◽  
...  

The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex.


Author(s):  
Sunhua Huang ◽  
Runfan Zhang ◽  
Diyi Chen

This paper is concerned with the stability of nonlinear fractional-order time varying systems with Caputo derivative. By using Laplace transform, Mittag-Leffler function, and the Gronwall inequality, the sufficient condition that ensures local stability of fractional-order systems with fractional order α : 0<α≤1 and 1<α<2 is proposed, respectively. Moreover, the condition of the stability of fractional-order systems with a state-feedback controller is been put forward. Finally, a numerical example is presented to show the validity and feasibility of the proposed method.


Author(s):  
Yiwen Huang ◽  
Yan Chen

This paper presents a novel vehicle lateral stability control method based on an estimated lateral stability region on the phase plane of vehicle yaw rate and lateral speed, which is obtained through a local linearization method. Since the estimated stability region does not only describe vehicle local stability, but also define the oversteering and understeering characteristics, the proposed control method can achieve both local stability and vehicle handling stability. Considering the irregular geometric shape of the estimated stability region, a stability analysis algorithm is designed to determine the distance between vehicle states and stability region boundaries. State estimation or measurement errors are also incorporated in the distance calculation. Based on the calculated shortest distance between vehicle states and stability boundaries, a direct yaw moment controller is designed to maintain vehicle states stay within the stability region. CarSim® and Simulink® co-simulation is applied to verify the control design through a cornering maneuver. The simulation results show that the proposed control method can make the vehicle stay within the stability region successfully and thus always operate in a safe manner.


2006 ◽  
Vol 15 (07) ◽  
pp. 1587-1599 ◽  
Author(s):  
ZHONGZHOU REN ◽  
DINGHAN CHEN ◽  
CHANG XU

Superheavy elements have provided a good test of the validity of both nuclear structure models and nuclear decay models in a large mass region. We firstly review the recent progress on theoretical studies of superheavy nuclei. Emphasis is placed on the structure and decay of superheavy nuclei. Then theoretical results of odd-odd nuclei with Z = 109 - 115 are presented and discussed. It is clearly demonstrated that there is shape coexistence for the ground state of many superheavy nuclei from different models and many superheavy nuclei are deformed. In some cases superdeformation can become the ground state of superheavy nuclei and it is important for future studies of superheavy nuclei. This can lead to the existence of low-energy isomers in the superheavy region and it plays an important role for the stability of superheavy nuclei. As α-decay and spontaneous fission plays a crucial role for identifications of new elements, we also review some typical models of α-decay half-lives and spontaneous fissions half-lives. Some new views on superheavy nuclei are presented.


2008 ◽  
Vol 86 (10) ◽  
pp. 1152-1158 ◽  
Author(s):  
M. Clavero ◽  
J. Prenda ◽  
F. Blanco-Garrido ◽  
M. Delibes

Two recent works related Eurasian otter ( Lutra lutra (L., 1758)) trophic patterns over large areas with the stability of aquatic ecosystems. Higher levels of instability lead to reduced availability and (or) predictability of fish, and consequently, to a decrease in fish consumption by otters. The aim of the present study is to test these macrogeographical patterns in otter diet at regional and local scales. We analysed otter diet in Mediterranean streams in southwestern Iberian Peninsula where clear hydrological stability gradients (related to drainage area or distance to the sea) could be defined. Hydrological stability was directly related to fish consumption and inversely to otter diet diversity in terms of occurrence and biomass, both at regional and local scales. The level of stability of aquatic ecosystems appears to be a critical indirect factor that modulates otter diet through its effects on fish populations. The resulting trophic patterns are maintained from local to macrogeographical scales.


Sign in / Sign up

Export Citation Format

Share Document