scholarly journals The Role of Eye Movement Driven Attention in Functional Strabismic Amblyopia

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hao Wang ◽  
Sheila Gillard Crewther ◽  
Zheng Qin Yin

Strabismic amblyopia “blunt vision” is a developmental anomaly that affects binocular vision and results in lowered visual acuity. Strabismus is a term for a misalignment of the visual axes and is usually characterized by impaired ability of the strabismic eye to take up fixation. Such impaired fixation is usually a function of the temporally and spatially impaired binocular eye movements that normally underlie binocular shifts in visual attention. In this review, we discuss how abnormal eye movement function in children with misaligned eyes influences the development of normal binocular visual attention and results in deficits in visual function such as depth perception. We also discuss how eye movement function deficits in adult amblyopia patients can also lead to other abnormalities in visual perception. Finally, we examine how the nonamblyopic eye of an amblyope is also affected in strabismic amblyopia.

Author(s):  
Maria I. Kiose

The article discusses the role of the age factor in the readers’ comprehension of stylistically heterogeneous texts, here the text fragments containing figurative noun groups of salient and non-salient character. The salience effects on eye movement and default responses are studied in the oculographic experiment where the secondary school children had to read the sentences displaying figurativeness. The earlier detected statistically significant corpus salience indices of referential, linguistic and discourse parameters in figurativeness construal get verified experimentally. In accordance with the Graded Salience and Defaultness hypotheses I assumed that the interpretation of figurative noun groups of varied referential, linguistic and discourse salience will require different cognitive effort in terms of both eye movement reactions and default inferences. Several eye-tracking experiments with adult participants sufficed to prove the dependency, however, the results obtained with children did not support the Salience hypothesis in the part of visual perception. The eye movements of children facing figurative noun groups did not show steady correlation patterns with the salience effects of these groups, whereas the default interpretations correlated strongly with referential, linguistic, and discourse salience. The results show evidence in favor of Mixed-Effects Model of interpretation


2009 ◽  
Vol 101 (2) ◽  
pp. 934-947 ◽  
Author(s):  
Masafumi Ohki ◽  
Hiromasa Kitazawa ◽  
Takahito Hiramatsu ◽  
Kimitake Kaga ◽  
Taiko Kitamura ◽  
...  

The anatomical connection between the frontal eye field and the cerebellar hemispheric lobule VII (H-VII) suggests a potential role of the hemisphere in voluntary eye movement control. To reveal the involvement of the hemisphere in smooth pursuit and saccade control, we made a unilateral lesion around H-VII and examined its effects in three Macaca fuscata that were trained to pursue visually a small target. To the step (3°)-ramp (5–20°/s) target motion, the monkeys usually showed an initial pursuit eye movement at a latency of 80–140 ms and a small catch-up saccade at 140–220 ms that was followed by a postsaccadic pursuit eye movement that roughly matched the ramp target velocity. After unilateral cerebellar hemispheric lesioning, the initial pursuit eye movements were impaired, and the velocities of the postsaccadic pursuit eye movements decreased. The onsets of 5° visually guided saccades to the stationary target were delayed, and their amplitudes showed a tendency of increased trial-to-trial variability but never became hypo- or hypermetric. Similar tendencies were observed in the onsets and amplitudes of catch-up saccades. The adaptation of open-loop smooth pursuit velocity, tested by a step increase in target velocity for a brief period, was impaired. These lesion effects were recognized in all directions, particularly in the ipsiversive direction. A recovery was observed at 4 wk postlesion for some of these lesion effects. These results suggest that the cerebellar hemispheric region around lobule VII is involved in the control of smooth pursuit and saccadic eye movements.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5178
Author(s):  
Sangbong Yoo ◽  
Seongmin Jeong ◽  
Seokyeon Kim ◽  
Yun Jang

Gaze movement and visual stimuli have been utilized to analyze human visual attention intuitively. Gaze behavior studies mainly show statistical analyses of eye movements and human visual attention. During these analyses, eye movement data and the saliency map are presented to the analysts as separate views or merged views. However, the analysts become frustrated when they need to memorize all of the separate views or when the eye movements obscure the saliency map in the merged views. Therefore, it is not easy to analyze how visual stimuli affect gaze movements since existing techniques focus excessively on the eye movement data. In this paper, we propose a novel visualization technique for analyzing gaze behavior using saliency features as visual clues to express the visual attention of an observer. The visual clues that represent visual attention are analyzed to reveal which saliency features are prominent for the visual stimulus analysis. We visualize the gaze data with the saliency features to interpret the visual attention. We analyze the gaze behavior with the proposed visualization to evaluate that our approach to embedding saliency features within the visualization supports us to understand the visual attention of an observer.


Perception ◽  
1972 ◽  
Vol 1 (2) ◽  
pp. 167-175 ◽  
Author(s):  
Nicole Lesèvre ◽  
A Rémond

Experiments are reported the aim of which was to elucidate the cause of each of the components of the lambda response, and particularly to evaluate the role of ‘on’ and ‘off’ visual effects which appear at various times during the oculomotor process and also the possible influence of non-visual mechanisms. Eight subjects with normal sight were studied under the following conditions: (i) horizontal eye movements of 12° were guided by fixation points placed on a dimly-lit uniform black field of 20°; a checkerboard of 6° aperture was placed in this field so as to be integrated into the oculomotor process at different times—at the beginning, during and at the end of the eye movement; (ii) successive horizontal eye movements of 3°, 7° and 11° scanned a checkerboard of 20°, each square of which had a 40′ aperture; (iii) the checkerboard was moved with an amplitude and period similar to those of the eye movements in (ii), but this time with gaze fixed. Horizontal and vertical movements of both eyes were recorded with an EOG. An EEG of the parieto-occipital regions was obtained using eight linked bipolar derivations in line on two montages, median longitudinal and right-left transverse. The EEG and EOG data were digitalized and a numerical programme of waveform recognition was used to identify the beginning of the saccade which triggers the averaging out of the EEG before (100 ms) and after (500 ms) the eye movement. A discussion of the results, taking into account the latency of the different components and their reinforcements or inhibition depending on experimental conditions, suggests that the two initial components of lambda response (including the initial portion of the classical lambda wave) might be due to visual effects (‘off effect’) that arise at the start of the movement or slightly before it at the time that the saccadic suppression begins. The later components could be attributed to visual effects brought into play towards the end of the movement (‘on effect’), when perception becomes normal again. It is, however, difficult to explain some of the results related to the amplitude of lambda components without bringing in a mechanism of non-visual origin (corollary discharge).


Autism ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 730-743 ◽  
Author(s):  
Emma Gowen ◽  
Andrius Vabalas ◽  
Alexander J Casson ◽  
Ellen Poliakoff

This study investigated whether reduced visual attention to an observed action might account for altered imitation in autistic adults. A total of 22 autistic and 22 non-autistic adults observed and then imitated videos of a hand producing sequences of movements that differed in vertical elevation while their hand and eye movements were recorded. Participants first performed a block of imitation trials with general instructions to imitate the action. They then performed a second block with explicit instructions to attend closely to the characteristics of the movement. Imitation was quantified according to how much participants modulated their movement between the different heights of the observed movements. In the general instruction condition, the autistic group modulated their movements significantly less compared to the non-autistic group. However, following instructions to attend to the movement, the autistic group showed equivalent imitation modulation to the non-autistic group. Eye movement recording showed that the autistic group spent significantly less time looking at the hand movement for both instruction conditions. These findings show that visual attention contributes to altered voluntary imitation in autistic individuals and have implications for therapies involving imitation as well as for autistic people’s ability to understand the actions of others.


Author(s):  
Kai Essig ◽  
Oleg Strogan ◽  
Helge Ritter ◽  
Thomas Schack

Various computational models of visual attention rely on the extraction of salient points or proto-objects, i.e., discrete units of attention, computed from bottom-up image features. In recent years, different solutions integrating top-down mechanisms were implemented, as research has shown that although eye movements initially are solely influenced by bottom-up information, after some time goal driven (high-level) processes dominate the guidance of visual attention towards regions of interest (Hwang, Higgins & Pomplun, 2009). However, even these improved modeling approaches are unlikely to generalize to a broader range of application contexts, because basic principles of visual attention, such as cognitive control, learning and expertise, have thus far not sufficiently been taken into account (Tatler, Hayhoe, Land & Ballard, 2011). In some recent work, the authors showed the functional role and representational nature of long-term memory structures for human perceptual skills and motor control. Based on these findings, the chapter extends a widely applied saliency-based model of visual attention (Walther & Koch, 2006) in two ways: first, it computes the saliency map using the cognitive visual attention approach (CVA) that shows a correspondence between regions of high saliency values and regions of visual interest indicated by participants’ eye movements (Oyekoya & Stentiford, 2004). Second, it adds an expertise-based component (Schack, 2012) to represent the influence of the quality of mental representation structures in long-term memory (LTM) and the roles of learning on the visual perception of objects, events, and motor actions.


2012 ◽  
Vol 25 (0) ◽  
pp. 171-172
Author(s):  
Fumio Mizuno ◽  
Tomoaki Hayasaka ◽  
Takami Yamaguchi

Humans have the capability to flexibly adapt to visual stimulation, such as spatial inversion in which a person wears glasses that display images upside down for long periods of time (Ewert, 1930; Snyder and Pronko, 1952; Stratton, 1887). To investigate feasibility of extension of vision and the flexible adaptation of the human visual system with binocular rivalry, we developed a system that provides a human user with the artificial oculomotor ability to control their eyes independently for arbitrary directions, and we named the system Virtual Chameleon having to do with Chameleons (Mizuno et al., 2010, 2011). The successful users of the system were able to actively control visual axes by manipulating 3D sensors held by their both hands, to watch independent fields of view presented to the left and right eyes, and to look around as chameleons do. Although it was thought that those independent fields of view provided to the user were formed by eye movements control corresponding to pursuit movements on human, the system did not have control systems to perform saccadic movements and compensatory movements as numerous animals including human do. Fluctuations in dominance and suppression with binocular rivalry are irregular, but it is possible to bias these fluctuations by boosting the strength of one rival image over the other (Blake and Logothetis, 2002). It was assumed that visual stimuli induced by various eye movements affect predominance. Therefore, in this research, we focused on influenced of patterns of eye movements on visual perception with binocular rivalry, and implemented functions to produce saccadic movements in Virtual Chameleon.


1998 ◽  
Vol 80 (4) ◽  
pp. 2046-2062 ◽  
Author(s):  
R. J. Krauzlis ◽  
F. A. Miles

Krauzlis, R. J. and F. A. Miles. Role of the oculomotor vermis in generating pursuit and saccades: effects of microstimulation. J. Neurophysiol. 80: 2046–2062, 1998. We studied the eye movements evoked by applying small amounts of current (2–50 μA) within the oculomotor vermis of two monkeys. We first compared the eye movements evoked by microstimulation applied either during maintained pursuit or during fixation. Smooth, pursuitlike changes in eye velocity caused by the microstimulation were directed toward the ipsilateral side and occurred at short latencies (10–20 ms). The amplitudes of these pursuitlike changes were larger during visually guided pursuit toward the contralateral side than during either fixation or visually guided pursuit toward the ipsilateral side. At these same sites, microstimulation also often produced abrupt, saccadelike changes in eye velocity. In contrast to the smooth changes in eye velocity, these saccadelike effects were more prevalent during fixation and during pursuit toward the ipsilateral side. The amplitude and type of evoked eye movements could also be manipulated at single sites by changing the frequency of microstimulation. Increasing the frequency of microstimulation produced increases in the amplitude of pursuitlike changes, but only up to a certain point. Beyond this point, the value of which depended on the site and whether the monkey was fixating or pursuing, further increases in stimulation frequency produced saccadelike changes of increasing amplitude. To quantify these effects, we introduced a novel method for classifying eye movements as pursuitlike or saccadelike. The results of this analysis showed that the eye movements evoked by microstimulation exhibit a distinct transition point between pursuit and saccadelike effects and that the amplitude of eye movement that corresponds to this transition point depends on the eye movement behavior of the monkey. These results are consistent with accumulating evidence that the oculomotor vermis and its associated deep cerebellar nucleus, the caudal fastigial, are involved in the control of both pursuit and saccadic eye movements. We suggest that the oculomotor vermis might accomplish this role by altering the amplitude of a motor error signal that is common to both saccades and pursuit.


2013 ◽  
Vol 38 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Marie-Line Bosse ◽  
Sonia Kandel ◽  
Chloé Prado ◽  
Sylviane Valdois

This research investigated whether text reading and copying involve visual attention-processing skills. Children in grades 3 and 5 read and copied the same text. We measured eye movements while reading and the number of gaze lifts (GL) during copying. The children were also administered letter report tasks that constitute an estimation of the number of letters that are processed simultaneously. The tasks were designed to assess visual attention span abilities (VA). The results for both grades revealed that the children who reported more letters, i.e., processed more consonants in parallel, produced fewer rightward fixations during text reading suggesting they could process more letters at each fixation. They also copied more letters per gaze lift from the same text. Furthermore, a regression analysis showed that VA span predicted variations in copying independently of the influence of reading skills. The findings support a role of VA span abilities in the early extraction of orthographic information, for both reading and copying tasks.


Sign in / Sign up

Export Citation Format

Share Document