scholarly journals Synthesis and Optimization of Visible Light Active BiVO4Photocatalysts for the Degradation of RhB

2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Rong Ran ◽  
Joanne Gamage McEvoy ◽  
Zisheng Zhang

Monoclinic BiVO4powders were synthesized via a novel route using potassium metavanadate (KVO3) prepared by calcination of K2CO3and V2O5as a starting material and followed by hydrothermal treatment and were investigated for the degradation of Rhodamine B (RhB) under visible light irradiation. The synthesized BiVO4particles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Visible (UV-Vis) light diffuse reflectance spectrophotometry. The synthesis produced pure monoclinic BiVO4particles with multimorphological features containing flower-like, flake-ball, flake, cuboid-like, and plate-like shapes and exhibited strong absorption in the visible light range. The BiVO4prepared via KVO3possessed excellent photocatalytic activity for the degradation of RhB under visible light. The performance of this catalyst was found to be superior to other BiVO4photocatalysts prepared via ammonium metavanadate (NH4VO3) using coprecipitation, combustion, and calcination methods reported in literature, respectively.

2013 ◽  
Vol 864-867 ◽  
pp. 601-604
Author(s):  
Jin Zhang ◽  
Yu Xin Sun

A novel attapulgite clay-based composite (BiVO4/attapulgite) was successfully prepared as a heterogeneous photocatalyst for degradation of rhodamine B (RhB) dye solution under visible light irradiation. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and microanalysis by energy dispersive spectrometry (EDS), and UV-visible diffuse reflectance spectra (DRS). The results showed that monoclinic BiVO4particles were loaded successfully on to the surface of attapulgite fibers and were widely dispersed. The DRS spectrum reveals that the BiVO4/attapulgite composite had much stronger absorption in the visible light range of 420-800 nm. Correspondingly, the BiVO4/attapulgite composite showed significantly higher activity in degrading RhB solution under visible-light irradiation compared to that of pure BiVO4.


2011 ◽  
Vol 364 ◽  
pp. 238-242 ◽  
Author(s):  
Kimi Melody ◽  
Yuliati Leny ◽  
Mustaffa Shamsuddin

A series of In0.1SnxZn0.85-2xS solid solutions was synthesized by hydrothermal method and employed as photocatalyst for photocatalytic hydrogen evolution under visible light irradiation. The structures, optical properties and morphologies of the solid solutions were studied by X-ray diffraction, diffuse reflectance UV–visible spectroscopy and field emission scanning electron microscopy. From the characterizations, it was confirmed that In0.1SnxZn0.85-2xS solid solution can be obtained and they have nanosized particles. The highest photocatalytic activity was observed on In0.1Sn0.03Zn0.79S photocatalyst, with average rate of hydrogen production 3.05 mmol/h, which was 1.2 times higher than the In0.1Zn0.85S photocatalyst.


2015 ◽  
Vol 72 (12) ◽  
pp. 2122-2131 ◽  
Author(s):  
MengMeng Xu ◽  
YaLei Zhao ◽  
QiShe Yan

Bi7O9I3, a kind of visible-light-responsive photocatalyst, with hierarchical micro/nano-architecture was successfully synthesized by oil-bath heating method, with ethylene glycol as solvent, and applied to degrade sulfonamide antibiotics. The as-prepared product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-visible diffuse reflection spectra and scanning electron microscopy (SEM). XRD and XPS tests confirmed that the product was indeed Bi7O9I3. The result of SEM observation shows that the as-synthesized Bi7O9I3 consists of a large number of micro-sheets with parallel rectangle structure. The optical test exhibited strong photoabsorption in visible light irradiation, with 617 nm of absorption edges. Moreover, the difference in the photocatalytic efficiency of as-prepared Bi7O9I3 at different seasons of a whole year was investigated in this study. The chemical oxygen demand removal efficiency and concentration of NO3− and SO42– of solution after reaction were also researched to confirm whether degradation of the pollutant was complete; the results indicated a high mineralization capacity of Bi7O9I3. The as-synthesized Bi7O9I3 exhibits an excellent oxidizing capacity of sulfadiazine sodium and favorable stability during the photocatalytic reaction.


2013 ◽  
Vol 860-863 ◽  
pp. 907-910
Author(s):  
Xiao Xia Lin ◽  
Jia Liu ◽  
De Gang Fu

B-doped TiO2nanotube arrays (B-TNTs) were synthesized by anodization method combined with dip-calcination technique. The physicochemical properties and surface morphology were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-Vis diffuse reflectance spectrum (DRS). Methyl blue (MB) solution was utilized as the degradation model to evaluate the photocatalytic activity of B-TNTs under visible light irradiation. The results show B-TNTs shifts the absorption edge of TiO2nanotube arrays to the visible light region and B-TNTs displays higher photocatalytic activity compared with undoped TNTs.


2014 ◽  
Vol 636 ◽  
pp. 7-10 ◽  
Author(s):  
Pei Song Tang ◽  
Chao Wan Tang ◽  
Jia Ni Ying ◽  
Dong Jing Ni ◽  
Qian Yang ◽  
...  

Using Fe (NO3)3⋅9H2O, Y(NO3)3⋅6H2O and citric acid as the main raw material, the YFeO3 nanoparticles were synthesized by ultrasonic assisted process and calcination. The YFeO3 nanoparticles were characterized by thermogravimetry and differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the perovskite structureYFeO3 (YFeO3-800) can be obtained through the calcination of ultrasonic processed YFeO3 precursors at 800 °C, and the resulting product has a particle size of 70 nm and an optical band gap of 2.0 eV. Consequently, the YFeO3-800 nanoparticles show high photocatalytic activity for decomposition of methyl orange under visible-light irradiation.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Silija Padikkaparambil ◽  
Binitha Narayanan ◽  
Zahira Yaakob ◽  
Suraja Viswanathan ◽  
Siti Masrinda Tasirin

Nanogold doped TiO2catalysts are synthesized, and their application in the photodegradation of dye pollutants is studied. The materials are characterized using different analytical techniques such as X-ray diffraction, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. The results revealed the strong interaction between the metallic gold nanoparticles and the anatase TiO2support. Au doped systems showed very good photoactivity in the degradation of dye pollutants under UV irradiation as well as in sunlight. A simple mechanism is proposed for explaining the excellent photoactivity of the systems. The reusability studies of the photocatalysts exhibited more than 98% degradation of the dye even after 10 repeated cycles.


2014 ◽  
Vol 917 ◽  
pp. 151-159 ◽  
Author(s):  
Nadia Riaz ◽  
Chong Fai Kait ◽  
Zakaria Man ◽  
Binay K. Dutta ◽  
Raihan M. Ramli ◽  
...  

Cu/TiO2 photocatalysts with different metal loading were prepared via modified depositionprecipitation method with the intention to reduce the band gap for Orange II degradation and mineralization under visible light radiation. The photocatalysts were characterized using thermal gravimetric analysis, powder X-ray diffraction, diffuse reflectance UV-Visible spectroscopy and field-emission scanning electron microscopy. 10 wt% photocatalysts showed the best performance compared to the bare TiO2.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhongpo Zhou ◽  
Haiying Wang

TheFe + Ncodoped nanowire samples are prepared by hydro-thermal method and annealed in NH3atmosphere. The XRD (X-ray diffraction), SEM (Scanning electron microscope), UV-vis absorption spectroscopy, and BET (Brunauer, Emmett, and Teller) results indicate that the samples are pure anatase nanowires. TheFe + Ncodoped samples have the highest specific surface area, the largest red-shift, and the largest absorption enhancement in the visible light range compared with Fe doped, N doped, and undoped nanowires. The measurements of XPS (X-ray photoelectron spectroscopy) show that N content ofFe + Ncodoped TiO2is about two times as large as that of the N doped TiO2. It is assumed that nitrogen doping plays a very important role for the photocatalytic activity increase and hence theFe + Ncodoped nanowire TiO2shows the most effective photocatalytic activity under the visible light irradiation.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
P. Nyamukamba ◽  
L. Tichagwa ◽  
S. Mamphweli ◽  
L. Petrik

Herein, we report the synthesis of quartz supported TiO2 photocatalysts codoped with carbon and silver through the hydrolysis of titanium tetrachloride followed by calcination at 500°C. The prepared samples were characterized by UV-Vis diffuse reflectance spectroscopy, high resolution scanning electron microscopy (HRSEM), Raman spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Codoping of TiO2 with Ag and carbon resulted in an increase in the surface area of the photocatalyst and altered the ratio of the anatase to rutile phase. The absorption edge of all the doped TiO2 photocatalysts redshifted and the band gap was reduced. The lowest band gap of 1.95 eV was achieved by doping with 0.5% Ag. Doping TiO2 using carbon as the only dopant resulted in a quartz supported photocatalyst that showed greater photocatalytic activity towards methyl orange than undoped TiO2 and also all codoped TiO2 photocatalysts under visible light irradiation.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Shuisheng Wu ◽  
Qian Dong ◽  
Jun Wang ◽  
Qingming Jia ◽  
Yanlin Sun ◽  
...  

Novel BiOBr hierarchical microspheres have been successfully prepared via a facile microwave-assisted solvothermal route and used for visible-light photocatalytic degradation of RhB. The phase and morphology of the products were characterized by powder X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), BET, and UV-vis diffuse reflectance spectra. The SEM observations displayed that BiOBr flower-like nanostructure assembled from nanosheets. The BiOBr flower-like nanostructure, with a narrow band gap (2.63 eV), shows excellent photocatalytic activity in the degradation of RhB dye under visible-light, much higher than those of BiOBr nanosheet and P25 photocatalysts.


Sign in / Sign up

Export Citation Format

Share Document