scholarly journals Generation Method of Multipiecewise Linear Chaotic Systems Based on the Heteroclinic Shil’nikov Theorem and Switching Control

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chunyan Han ◽  
Fang Yuan ◽  
Xiaoyuan Wang

Based on the heteroclinic Shil’nikov theorem and switching control, a kind of multipiecewise linear chaotic system is constructed in this paper. Firstly, two fundamental linear systems are constructed via linearization of a chaotic system at its two equilibrium points. Secondly, a two-piecewise linear chaotic system which satisfies the Shil’nikov theorem is generated by constructing heteroclinic loop between equilibrium points of the two fundamental systems by switching control. Finally, another multipiecewise linear chaotic system that also satisfies the Shil’nikov theorem is obtained via alternate translation of the two fundamental linear systems and heteroclinic loop construction of adjacent equilibria for the multipiecewise linear system. Some basic dynamical characteristics, including divergence, Lyapunov exponents, and bifurcation diagrams of the constructed systems, are analyzed. Meanwhile, computer simulation and circuit design are used for the proposed chaotic systems, and they are demonstrated to be effective for the method of chaos anticontrol.

2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Fang Bao ◽  
Simin Yu

There exist two different types of equilibrium points in 3-D autonomous systems, named as saddle foci of index 1 and index 2, which are crucial for chaos generation. Although saddle foci of index 2 have been usually applied for creating double-scroll or double-wing chaotic attractors, saddle foci of index 1 are further considered for chaos generation in this paper. A novel approach for constructing chaotic systems is investigated by applying the switching control strategy and yielding a heteroclinic loop which connects two saddle foci of index 1. A basic 3-D linear system with an arbitrary normal direction of the eigenplane, possessing a saddle focus of index 1 whose corresponding eigenvalues satisfy the Shil'nikov inequality, is first introduced. Then a heteroclinic loop connecting two saddle foci of index 1 will be formed by applying the switching control strategy to the basic 3-D linear system. The heteroclinic loop consists of an unstable manifold, a stable manifold, and a heteroclinic point. Under the necessary conditions for forming the heteroclinic loop, the intended two-segmented piecewise linear system which exhibits the chaotic behavior in the sense of the Smale horseshoe can be finally constructed. An illustrative example is given, confirming the effectiveness of the proposed method.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950197 ◽  
Author(s):  
P. D. Kamdem Kuate ◽  
Qiang Lai ◽  
Hilaire Fotsin

The Lorenz system has attracted increasing attention on the issue of its simplification in order to produce the simplest three-dimensional chaotic systems suitable for secure information processing. Meanwhile, Sprott’s work on elegant chaos has revealed a set of 19 chaotic systems all described by simple algebraic equations. This paper presents a new piecewise-linear chaotic system emerging from the simplification of the Lorenz system combined with the elegance of Sprott systems. Unlike the majority, the new system is a non-Shilnikov chaotic system with two nonhyperbolic equilibria. It is multiplier-free, variable-boostable and exclusively based on absolute value and signum nonlinearities. The use of familiar tools such as Lyapunov exponents spectra, bifurcation diagrams, frequency power spectra as well as Poincaré map help to demonstrate its chaotic behavior. The novel system exhibits inverse period doubling bifurcations and multistability. It has only five terms, one bifurcation parameter and a total amplitude controller. These features allow a simple and low cost electronic implementation. The adaptive synchronization of the novel system is investigated and the corresponding electronic circuit is presented to confirm its feasibility.


2018 ◽  
Vol 7 (3) ◽  
pp. 1931 ◽  
Author(s):  
Sivaperumal Sampath ◽  
Sundarapandian Vaidyanathan ◽  
Aceng Sambas ◽  
Mohamad Afendee ◽  
Mustafa Mamat ◽  
...  

This paper reports the finding a new four-scroll chaotic system with four nonlinearities. The proposed system is a new addition to existing multi-scroll chaotic systems in the literature. Lyapunov exponents of the new chaotic system are studied for verifying chaos properties and phase portraits of the new system via MATLAB are unveiled. As the new four-scroll chaotic system is shown to have three unstable equilibrium points, it has a self-excited chaotic attractor. An electronic circuit simulation of the new four-scroll chaotic system is shown using MultiSIM to check the feasibility of the four-scroll chaotic model.


Author(s):  
Meng Jiao Wang ◽  
Xiao Han Liao ◽  
Yong Deng ◽  
Zhi Jun Li ◽  
Yi Ceng Zeng ◽  
...  

Systems with hidden attractors have been the hot research topic of recent years because of their striking features. Fractional-order systems with hidden attractors are newly introduced and barely investigated. In this paper, a new 4D fractional-order chaotic system with hidden attractors is proposed. The abundant and complex hidden dynamical behaviors are studied by nonlinear theory, numerical simulation, and circuit realization. As the main mode of electrical behavior in many neuroendocrine cells, bursting oscillations (BOs) exist in this system. This complicated phenomenon is seldom found in the chaotic systems, especially in the fractional-order chaotic systems without equilibrium points. With the view of practical application, the spectral entropy (SE) algorithm is chosen to estimate the complexity of this fractional-order system for selecting more appropriate parameters. Interestingly, there is a state variable correlated with offset boosting that can adjust the amplitude of the variable conveniently. In addition, the circuit of this fractional-order chaotic system is designed and verified by analog as well as hardware circuit. All the results are very consistent with those of numerical simulation.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3130
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed

Fractional-order chaotic systems have more complex dynamics than integer-order chaotic systems. Thus, investigating fractional chaotic systems for the creation of image cryptosystems has been popular recently. In this article, a fractional-order memristor has been developed, tested, numerically analyzed, electronically realized, and digitally implemented. Consequently, a novel simple three-dimensional (3D) fractional-order memristive chaotic system with a single unstable equilibrium point is proposed based on this memristor. This fractional-order memristor is connected in parallel with a parallel capacitor and inductor for constructing the novel fractional-order memristive chaotic system. The system’s nonlinear dynamic characteristics have been studied both analytically and numerically. To demonstrate the chaos behavior in this new system, various methods such as equilibrium points, phase portraits of chaotic attractor, bifurcation diagrams, and Lyapunov exponent are investigated. Furthermore, the proposed fractional-order memristive chaotic system was implemented using a microcontroller (Arduino Due) to demonstrate its digital applicability in real-world applications. Then, in the application field of these systems, based on the chaotic behavior of the memristive model, an encryption approach is applied for grayscale original image encryption. To increase the encryption algorithm pirate anti-attack robustness, every pixel value is included in the secret key. The state variable’s initial conditions, the parameters, and the fractional-order derivative values of the memristive chaotic system are used for contracting the keyspace of that applied cryptosystem. In order to prove the security strength of the employed encryption approach, the cryptanalysis metric tests are shown in detail through histogram analysis, keyspace analysis, key sensitivity, correlation coefficients, entropy analysis, time efficiency analysis, and comparisons with the same fieldwork. Finally, images with different sizes have been encrypted and decrypted, in order to verify the capability of the employed encryption approach for encrypting different sizes of images. The common cryptanalysis metrics values are obtained as keyspace = 2648, NPCR = 0.99866, UACI = 0.49963, H(s) = 7.9993, and time efficiency = 0.3 s. The obtained numerical simulation results and the security metrics investigations demonstrate the accuracy, high-level security, and time efficiency of the used cryptosystem which exhibits high robustness against different types of pirate attacks.


2012 ◽  
Vol 220-223 ◽  
pp. 2113-2116
Author(s):  
Su Hai Huang

A modified Chen-Qi-like chaotic system is presented. Some basic dynamical characteristics of this system are studied by calculating the Lyapunov exponent and phase figure. Based on the Lyapunov stability theorem, adaptive control scheme and parameters update law are presented for the anti-synchronization of new chaotic systems with fully unknown parameters. Finally, the numerical simulation verify that the control law and parameter changing are correct.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ahmad Taher Azar ◽  
Christos Volos ◽  
Nikolaos A. Gerodimos ◽  
George S. Tombras ◽  
Viet-Thanh Pham ◽  
...  

A few special chaotic systems without unstable equilibrium points have been investigated recently. It is worth noting that these special systems are different from normal chaotic ones because the classical Shilnikov criterion cannot be used to prove chaos of such systems. A novel unusual chaotic system without equilibrium is proposed in this work. We discover dynamical properties as well as the synchronization of the new system. Furthermore, a physical realization of the system without equilibrium is also implemented to illustrate its feasibility.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Jianxiong Zhang ◽  
Wansheng Tang

This paper proposes the optimal control methods for a class of chaotic systems via state feedback. By converting the chaotic systems to the form of uncertain piecewise linear systems, we can obtain the optimal controller minimizing the upper bound on cost function by virtue of the robust optimal control method of piecewise linear systems, which is cast as an optimization problem under constraints of bilinear matrix inequalities (BMIs). In addition, the lower bound on cost function can be achieved by solving a semidefinite programming (SDP). Finally, numerical examples are given to illustrate the results.


2021 ◽  
Vol 31 (11) ◽  
pp. 2150168
Author(s):  
Musha Ji’e ◽  
Dengwei Yan ◽  
Lidan Wang ◽  
Shukai Duan

Memristor, as a typical nonlinear element, is able to produce chaotic signals in chaotic systems easily. Chaotic systems have potential applications in secure communications, information encryption, and other fields. Therefore, it is of importance to generate abundant dynamic behaviors in a single chaotic system. In this paper, a novel memristor-based chaotic system without equilibrium points is proposed. One of the essential features is the absence of symmetry in this system, which increases the complexity of the new system. Then, the nonlinear dynamic behaviors of the system are analyzed in terms of chaos diagrams, bifurcation diagrams, Poincaré maps, Lyapunov exponent spectra, the sum of Lyapunov exponents, phase portraits, 0–1 test, recurrence analysis and instantaneous phase. The results of the sum of Lyapunov exponents show that the given system is a quasi-Hamiltonian system with certain initial conditions (IC) and parameters. Next, other critical phenomena, such as hidden multi-scroll attractors, abundant coexistence characteristics, are found characterized through basins of attraction and others. Especially, it reveals some rare phenomena in other systems that multiple hidden hyperchaotic attractors coexist. Finally, the circuit implementation based on Micro Control Unit (MCU) confirms theoretical analysis and the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document