scholarly journals Synthesis of ZnxCd1-xSe@ZnO Hollow Spheres in Different Sizes for Quantum Dots Sensitized Solar Cells Application

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 132 ◽  
Author(s):  
Libo Yu ◽  
Zhen Li

ZnxCd1-xSe@ZnO hollow spheres (HS) were successfully fabricated for application in quantum dot sensitized solar cells (QDSSCs) based on ZnO HS through the ion-exchange process. The sizes of the ZnxCd1-xSe@ZnO HS could be tuned from ~300 nm to ~800 nm using ZnO HS pre-synthesized by different sizes of carbonaceous spheres as templates. The photovoltaic performance of QDSSCs, especially the short-circuit current density (Jsc), experienced an obvious change when different sizes of ZnxCd1-xSe@ZnO HS are employed. The ZnxCd1-xSe@ZnO HS with an average size distribution of ~500 nm presented a better performance than the QDSSCs based on other sizes of ZnxCd1-xSe@ZnO HS. When using the mixture of ZnxCd1-xSe@ZnO HS with different sizes, the power conversion efficiency can be further improved. The size effect of the hollow spheres, light scattering, and composition gradient structure ZnxCd1-xSe@ZnO HS are responsible for the enhancement of the photovoltaic performance.

2019 ◽  
pp. 63
Author(s):  
B. Baptayev ◽  
A. Rysbekova ◽  
D. Kalpakov ◽  
A. Aukenova ◽  
D. Mustazheb ◽  
...  

The aggregation of sensitizer molecules on the surface of photoanode is a serious issue that can affect the photovoltaic performance of dye-sensitized solar cells. Prevention of dye agglomeration, therefore, is critical. Traditional methods of aggregation control are either synthetically challenging or technologically difficult and expensive. In this article, the use of bis(4-pyridyl)alkanes to control porphyrin dye aggregation is presented. Three bis(4-pyridyl)alkanes – bis(4-pyridyl)butane L4, bis(4-pyridyl)octane L8 and bis(4-pyridyl)decane L10 were synthesized. These bis(4-pyridyl)alkane ligands are axially attached to the metallic center of synthesized porphyrin dye P. The complexes was obtained by mixing the solutions of dye P and each ligand (L) in 2:1 ratio 1 h before the soaking step. As a result three cells were prepared: P-L4, P-L8 and P-L10. The performance of these cells were compared with a reference cell which was prepared from porphyrin dye P only. IPCE analysis demonstrated the highest dye load in P-L4 cell which was ascribed to lowered dye aggregation. Photovoltaic analysis showed improved short circuit current density due to suppressed dye aggregation caused by the complexation of the porphyrin dye P with the linker L4. As a result the overall cell efficiency increased to 42% demonstrating the successful utilization of the (4-pyridyl)alkane linker complexes with porphyrin dye.


2012 ◽  
Vol 1442 ◽  
Author(s):  
Ji Young Ahn ◽  
Kook Joo Moon ◽  
Ji Hoon Kim ◽  
Soo Hyung Kim

ABSTRACTHighly mesoporous TiO2 nanoparticles (NPs) were synthesized by an aero-sol-gel process in this approach. By varying the mass fraction of inorganic templates, the formation of mesoporous TiO2 NPs with optimized surface area and pore volume distributions was examined. Then, the photovoltaic properties of the resulting mesoporous TiO2 NPs were systematically investigated by applying them into the photoanode of dye-sensitized solar cells (DSSCs). The mesoporous TiO2 NP-based DSSCs fabricated in this study showed an improved short circuit current density and power conversion efficiency compared with solid TiO2 NP-based DSSCs due to the increase of the amount of inorganic dye (N719) adsorption in the mesoporous TiO2 NPs. These mesoporous TiO2 NPs fabricated have a strong potential as an effective dye supporting and electron transfer medium to improve the photovoltaic performance of DSSCs.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3295
Author(s):  
Andrzej Sławek ◽  
Zbigniew Starowicz ◽  
Marek Lipiński

In recent years, lead halide perovskites have attracted considerable attention from the scientific community due to their exceptional properties and fast-growing enhancement for solar energy harvesting efficiency. One of the fundamental aspects of the architecture of perovskite-based solar cells (PSCs) is the electron transport layer (ETL), which also acts as a barrier for holes. In this work, the influence of compact TiO2 ETL on the performance of planar heterojunction solar cells based on CH3NH3PbI3 perovskite was investigated. ETLs were deposited on fluorine-doped tin oxide (FTO) substrates from a titanium diisopropoxide bis(acetylacetonate) precursor solution using the spin-coating method with changing precursor concentration and centrifugation speed. It was found that the thickness and continuity of ETLs, investigated between 0 and 124 nm, strongly affect the photovoltaic performance of PSCs, in particular short-circuit current density (JSC). Optical and topographic properties of the compact TiO2 layers were investigated as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2019 ◽  
Vol 821 ◽  
pp. 407-413 ◽  
Author(s):  
Mohamed Orabi Moustafa ◽  
Tariq Alzoubi

The performance of the InGaN single-junction thin film solar cells has been analyzed numerically employing the Solar Cell Capacitance Simulator (SCAPS-1D). The electrical properties and the photovoltaic performance of the InGaN solar cells were studied by changing the doping concentrations and the bandgap energy along with each layer, i.e. n-and p-InGaN layers. The results reveal an optimum efficiency of the InGaN solar cell of ~ 15.32 % at a band gap value of 1.32 eV. It has been observed that lowering the doping concentration NA leads to an improvement of the short circuit current density (Jsc) (34 mA/cm2 at NA of 1016 cm−3). This might be attributed to the increase of the carrier mobility and hence an enhancement in the minority carrier diffusion length leading to a better collection efficiency. Additionally, the results show that increasing the front layer thickness of the InGaN leads to an increase in the Jsc and to the conversion efficiency (η). This has been referred to the increase in the photogenerated current, as well as to the less surface recombination rate.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2015 ◽  
Vol 22 (06) ◽  
pp. 1550072
Author(s):  
SUDIP ADHIKARI ◽  
HIDEO UCHIDA ◽  
MASAYOSHI UMENO

In this paper, composite carbon nanotubes (C-CNTs); single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) are synthesized using an ultrasonic nebulizer in a large quartz tube for photovoltaic device fabrication in poly-3-octyl-thiophene (P3OT)/ n - Si heterojunction solar cells. We found that the device fabricated with C-CNTs shows much better photovoltaic performance than that of a device without C-CNTs. The device with C-CNTs shows open-circuit voltage (Voc) of 0.454 V, a short circuit current density (Jsc) of 12.792 mA/cm2, fill factor (FF) of 0.361 and power conversion efficiency of 2.098 %. Here, we proposed that SWCNTs and MWCNTs provide efficient percolation paths for both electron and hole transportation to opposite electrodes and leading to the suppression of charge carrier recombination, thereby increasing the photovoltaic device performance.


1996 ◽  
Vol 426 ◽  
Author(s):  
W. Song ◽  
D. Mao ◽  
L. Feng ◽  
Y. Zhu ◽  
M. H. Aslan ◽  
...  

AbstractWe investigated the effect of CdCl2 treatment of CdS films on the photovoltaic performance of polycrystalline CdTe/CdS solar cells. X-ray diffraction studies indicated that the diffusion of S into CdTe is qualitatively the same for CdTe/CdS films fabricated with both as-deposited and CdCl2-treated CdS. A major difference was observed in the extent of Te diffusion into CdS for the two types of CdS films. Full conversion of CdS into CdS1-yTey; was observed for films prepared with asdeposited CdS, while the formation of the ternary phase was below the detection limit for films prepared with CdCl2-treated CdS. Photoluminescence measurements confirmed this result. The difference in interdiffusion leads to differences in optical transmission of CdS films and spectral response of CdTe/CdS solar cells. An increase of 2.7 mA/cm2 in short-circuit current density was observed as a result of improved spectral response in the wavelength range of 500–600 nm for the CdCl2-treated CdS.


Sign in / Sign up

Export Citation Format

Share Document