scholarly journals Short-Term Effects of Biogas Digestates and Pig Slurry Application on Soil Microbial Activity

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
J. Abubaker ◽  
K. Risberg ◽  
E. Jönsson ◽  
A. S. Dahlin ◽  
H. Cederlund ◽  
...  

The effect of four biogas digestates (BD-A, BD-B, BD-C, and BD-D) and pig slurry (PS) on soil microbial functions was assessed at application rates corresponding to 0–1120 kgNH4+-N ha−1. At dose corresponding to 140 kgNH4+-N ha−1, 30.9–32.5% of the carbon applied in BD-A, BD-C, and PS was utilized during 12 days, while for BD-B and BD-D corresponding utilization was 19.0 and 16.9%, respectively. All BDs resulted in net nitrogen assimilation at low rates (17.5–140 kgNH4+-N ha−1) but net mineralization dominated at higher rates. PS resulted in net mineralization at all application rates. All residues inhibited potential ammonium oxidation (PAO), with EC50-values ranging between 45 and 302 kgNH4+-N ha−1. Low rates of BDs appeared to weakly stimulate potential denitrification activity (PDA), while higher rates resulted in logarithmic decrease. The EC50-values for PDA were between 238 and 347 kgNH4+-N ha−1. No inhibition of PDA was observed after amendment with PS. In conclusion, biogas digestates inhibited ammonia oxidation and denitrification, which could be an early warning of potential hazardous substances in the digestates. However, this effect can also be regarded as positive, since it may reduce nitrogen losses.

2004 ◽  
Vol 35 (11-12) ◽  
pp. 1591-1603 ◽  
Author(s):  
M. Ros ◽  
C. Garcia ◽  
T. Hernandez ◽  
M. Andres ◽  
A. Barja

Agriculture ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 244 ◽  
Author(s):  
Kerstin Nielsen ◽  
Christina-Luise Roß ◽  
Marieke Hoffmann ◽  
Andreas Muskolus ◽  
Frank Ellmer ◽  
...  

Digestates are commonly used as organic inputs in agriculture. This study aimed to answer four questions: (1) What are the immediate and longer-term impacts of digestates on soil microbial activity?; (2) How much of the digestates’ carbon is mineralized within the first months? (3) How do the nitrogen, lignin, cellulose, and hemicellulose contents of digestates influence microbial activity and carbon mineralization? (4) How does the soil type influence mineralization? To investigate this, dehydrogenase activity (DHA) was measured in a field trial and in laboratory experiments with five digestates (DGs), cattle slurry, and cattle manure. DHA measurements were supplemented with soil respiration experiments using two different soils. DHA was significantly increased by all organic inputs, but decreased back to the control level within seven months under field conditions. Twenty percent to 44% of the organic carbon (Corg) in the digestates was converted to CO2 after 178 days. Soil respiration was significantly negatively correlated to lignin content (r = −0.82, p < 0.01) and not correlated to nitrogen, cellulose, or hemicellulose content. On the basis of equal carbon application, slurry promoted soil respiration and DHA more strongly than digestates in the short term.


2015 ◽  
Vol 46 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Diana Morales ◽  
Mónica Machado Vargas ◽  
Michele Pottes de Oliveira ◽  
Bruna Lunarde Taffe ◽  
Jucinei Comin ◽  
...  

ABSTRACT: Manure fertilization is a common practice, but little is known about its impacts on soil microbial activity and organic matter. Aiming to evaluate soil microbial response to nine years of successive applications of swine manure, organic carbon (TOC), total nitrogen (TN), pH, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), and enzyme (ß-glucosidase, phosphatase, arylsulphatase, and FDA) activities were measured in the 0-10cm soil layer, in a no-tillage system. Treatments were: control soil without fertilization (C), and application of two doses (104 and 209kg of N ha-1year-1) of urea (U1 and U2), pig slurry (PS1 and PS2) and deep litter (DL1 and DL2). TOC, TN, soil pH, MBC, and BR increased in soil fertilized with DL, and were lower in U treatments. Soils with U and DL application had higher qCO2, related to different sources of stressors like nutrient imbalance. Phosphatase and ß-glucosidase activities were not affected by treatments, increased with time, and had a strong correlation with MBC. We conclude that long-term swine manure applications increase microbial activity and soil organic matter, mainly in DL form; while urea applications have negative impacts on these indicators.


Environments ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 126
Author(s):  
Ariel A. Szogi ◽  
Paul D. Shumaker ◽  
Eric D. Billman ◽  
Philip J. Bauer

Novel biotechnology on transgenic plants capable of metabolizing phosphite (Phi), a reduced form of P, could improve the effectiveness of P fertilizers and reduce the P footprint in agriculture with the benefit of suppressing weed growth. However, potassium Phi (K-Phi) salts used as fertilizer are highly soluble in water. At the same time, sandy soils of the Southern Coastal Plain are vulnerable to leaching losses resulting from long-term Pi fertilizer application. We performed a replicated leaching trial using five soil materials that included three surface and two subsurface layers from cultivated topsoil (Ap horizon) with contrasting Phi and Pi sorption capacities. Each soil received three treatments K-Phi at rates 0 (control), 24, and 49 kg P ha−1 and leached twice with de-ionized water. All K-Phi-treated soils leached Phi except for the controls. A phosphorus saturation ratio (PSR) calculated from P, Al, and Fe in acid extracts indicated increasing environmental risk of Phi leaching in soils with lower Phi and Pi sorption capacities at rising rates of applied K-Phi. Because plants rapidly absorb Phi, further studies on the environmental impact of K-Phi fertilizer use should include the interaction of plants with soil properties and soil microbial activity at optimal Phi application rates for growing transgenic plants able to use Phi as a nutrient source.


2016 ◽  
Vol 3 (10) ◽  
pp. 160361 ◽  
Author(s):  
Anne l-M-Arnold ◽  
Maren Grüning ◽  
Judy Simon ◽  
Annett-Barbara Reinhardt ◽  
Norbert Lamersdorf ◽  
...  

Climate change may foster pest epidemics in forests, and thereby the fluxes of elements that are indicators of ecosystem functioning. We examined compounds of carbon (C) and nitrogen (N) in insect faeces, leaf litter, throughfall and analysed the soils of deciduous oak forests ( Quercus petraea  L.) that were heavily infested by the leaf herbivores winter moth ( Operophtera brumata  L.) and mottled umber ( Erannis defoliaria  L.). In infested forests, total net canopy-to-soil fluxes of C and N deriving from insect faeces, leaf litter and throughfall were 30- and 18-fold higher compared with uninfested oak forests, with 4333 kg C ha −1 and 319 kg N ha −1 , respectively, during a pest outbreak over 3 years. In infested forests, C and N levels in soil solutions were enhanced and C/N ratios in humus layers were reduced indicating an extended canopy-to-soil element pathway compared with the non-infested forests. In a microcosm incubation experiment, soil treatments with insect faeces showed 16-fold higher fluxes of carbon dioxide and 10-fold higher fluxes of dissolved organic carbon compared with soil treatments without added insect faeces (control). Thus, the deposition of high rates of nitrogen and rapidly decomposable carbon compounds in the course of forest pest epidemics appears to stimulate soil microbial activity (i.e. heterotrophic respiration), and therefore, may represent an important mechanism by which climate change can initiate a carbon cycle feedback.


Sign in / Sign up

Export Citation Format

Share Document