scholarly journals Response of soil microbiota to nine-year application of swine manure and urea

2015 ◽  
Vol 46 (2) ◽  
pp. 260-266 ◽  
Author(s):  
Diana Morales ◽  
Mónica Machado Vargas ◽  
Michele Pottes de Oliveira ◽  
Bruna Lunarde Taffe ◽  
Jucinei Comin ◽  
...  

ABSTRACT: Manure fertilization is a common practice, but little is known about its impacts on soil microbial activity and organic matter. Aiming to evaluate soil microbial response to nine years of successive applications of swine manure, organic carbon (TOC), total nitrogen (TN), pH, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), and enzyme (ß-glucosidase, phosphatase, arylsulphatase, and FDA) activities were measured in the 0-10cm soil layer, in a no-tillage system. Treatments were: control soil without fertilization (C), and application of two doses (104 and 209kg of N ha-1year-1) of urea (U1 and U2), pig slurry (PS1 and PS2) and deep litter (DL1 and DL2). TOC, TN, soil pH, MBC, and BR increased in soil fertilized with DL, and were lower in U treatments. Soils with U and DL application had higher qCO2, related to different sources of stressors like nutrient imbalance. Phosphatase and ß-glucosidase activities were not affected by treatments, increased with time, and had a strong correlation with MBC. We conclude that long-term swine manure applications increase microbial activity and soil organic matter, mainly in DL form; while urea applications have negative impacts on these indicators.

2021 ◽  
Vol 237 ◽  
pp. 01042
Author(s):  
Qiuhua Li ◽  
Jingjing Sun ◽  
Jun Yao ◽  
Qunhui Wang

A maize field experiment in the North China Plain was conducted to understand the effect of different N fertilizer rate on the yield of maize, using soil microbial activity and root length density (RLD) as performance parameters, due to their possibility to enhance productivity. The four N fertilizer rates were 0 (N0), 120 (N120), 210 (N210) and 300 (N300) kg N hm-2. The results indicated that nitrogen (N) fertilizer had a significant influence not only on yield (p<0.05), but also on root length density (p<0.05) and soil microbial activity (p<0.05). In addition, the soil microbial activity and RLD were significantly related with maize yield. RLD differences were generally evident within the 100 cm soil layer, whereas there was no difference in the deeper soil under different N treatments. The most RLD concentrated in 0-60cm soil layer under N0, N120 and in 0-90cm soil layer under N210, N300. The microbial growth rate constant (k) was greater in N210 than other treatments. Generally, N fertilizer application can stimulate root growth and microbial activity, meanwhile, they can interact with each other, heighten the availability of N fertilizer in soil, thus enhanced yield of maize. According to our study, 210 kg N hm-2 was the optimum N fertilizer rate to achieve maximum yield and sustain the soil productivity.


Author(s):  
Fernando S. Araújo ◽  
Josué R. Barroso ◽  
Lucas de O. Freitas ◽  
Mauro S. Teodoro ◽  
Zigomar M. de Souza ◽  
...  

ABSTRACT Conservationist systems of crop management increases the amount of substrate, alters fertility and increases soil biological activity. The objective of this study was to evaluate the influence of soil management systems on the chemical attributes and microbial activity of soil under cassava crop. The experiment was set as completely randomized design in a factorial scheme of 2 x 3 x 2, being two systems of cultivation (minimum with only mown; minimum with mown and incorporation), three types of soil coverage (fallow; Crotalaria juncea L.; Canavalia ensiformis L.) and two soil depths (0-0.10 and 0.10-0.20 m), with four repetitions. The production of dry mass from cover crops, the soil chemical attributes and the soil microbial activity were evaluated. There were no differences between management systems, and the C. juncea cover crop presented superior dry mass production among the soil coverages. The concentrations of soil Ca and K were greater in the fallow coverage and C. juncea areas in the 0-0.10 m soil layer; however, these nutrients differ in the soil layer below (0.10-0.20 m). There were no differences for the basal respiration of soil microorganisms in both soil depths or among soil coverage, but the carbon from microbial biomass was superior in the most superficial soil layer where more substrate is available to soil microorganisms.


2012 ◽  
Vol 5 ◽  
pp. ASWR.S8599 ◽  
Author(s):  
Xiao Guoju ◽  
Zhang Qiang ◽  
Bi Jiangtao ◽  
Zhang Fengju ◽  
Luo Chengke

The effects of winter temperature rises on soil microbial activity, nutrient and salinity in Ningxia Plain were studied in a field experiment using an infrared radiator to raise temperatures. Winter temperature rises led to increases in soil organic matter, available phosphorus, soil pH and total salt content, but decreased the available nitrogen in soil and the activities of soil catalase, urease and phosphatase. With a winter temperature of 0.5 °C-2.0 °C, the activities of soil catalase, urease and phosphatase were respectively decreased by 0.08-1.20 mL g-1, 0.004-0.019 mg g-1, and 0.10-0.25 mg kg-1; soil organic matter was increased by 0.01-0.62 g kg-1, available nitrogen decreased by 2.45-4.66 g kg-1, available phosphorus increased by 2.92-5.74 g kg-1; soil pH increased by 0.42-0.67, and total salt increased by 0.39-0.50 g kg-1. Winter temperature rises decreased soil microbial activity, accelerated the decomposition of soil nutrients, and intensified soil salinization.


2020 ◽  
Vol 50 (12) ◽  
Author(s):  
Monique Souza ◽  
Mónica María Machado Vargas ◽  
Bárbara Santos Ventura ◽  
Vilmar Müller Júnior ◽  
Cláudio Roberto Fonsêca Sousa Soares ◽  
...  

ABSTRACT: Microbial biomass is a driving force in the dynamics of soil organic matter, and microbial activity is an indicator of soil quality in agroecosystems, reflecting changes in management practices and environmental conditions. We evaluated the effect of monoculture and intercropped winter cover crops on soil chemical attributes, microbial biomass carbon (MBC), basal respiration (BR), metabolic quotient (qCO2), urease, β-glucosidase, and fluorescein diacetate (FDA) hydrolysis activity, as well as onion yield in a no-tillage system. Soil is a Typic Humudept, and treatments were control with spontaneous vegetation, barley, rye, oilseed radish (OR), OR + rye, and OR + barley. The soil was sampled (0-10 cm) five times between June and December. There were no differences among treatments for MBC and BR, and the highest values for those attributes occurred in June, when cover plants were in their initial stage. Although, qCO2 was not affected by any treatment, it varied among sampling periods, ranging from 0.62 to 10 µg C-CO2 mg-1 MBC h-1, indicating a low- or no stress environment. Cover crops had little influence on enzyme activity, but FDA was lowered in areas with single crops of barley and rye. Average onion yield in cover crops treatments was 13.01 (Mg ha-1), 30-40% higher than in the control treatment.


2020 ◽  
Vol 12 (9) ◽  
pp. 199
Author(s):  
Maria Josiane Martins ◽  
Tânia Santos Silva ◽  
Igor Paranhos Caldas ◽  
Geovane Teixeira de Azevedo ◽  
Isabelle Carolyne Cardoso ◽  
...  

The allocation of the large amount of swine waste from farms is an international concern. An efficient way of managing such waste is its use in farming. It is already known that the incorporation of organic waste into the soil significantly increases the microbial population. Therefore, the objective was to evaluate the impact of the use of swine manure on the soil microbiota in a Eutrophic Oxisol. The experiment was set up in a completely randomized design in a 6 &times; 4 factorial scheme (sixconcentrations of swine manure and four evaluation periods) with four replications. We evaluate the following characteristics: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH.: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH. A significant effect was found in the interaction between concentrations and time of incubation (p &lt; 0.05) of swine manure on microbial activity in the soil. The amount of microbial carbon increased as a function of increased levels of liquid swine manure. No interaction was observed between concentrations and time of incubation for the pH. The evaluation of the isolated factors allowed to observe that the pH decreased as the doses of manure were incremented. Higher and lower pH values were found after 5 and 30 days of incubation. The application of liquid swine manure up to 6000 L ha-1 increases the release of CO2 and carbon in the microbial biomass. The applications of liquid swine manure cause a gradual reduction in soil pH.


2019 ◽  
Vol 45 (4) ◽  
pp. 393-398
Author(s):  
Ivã Tavares Butrinowski ◽  
Rosangela Dallemole-Giaretta ◽  
Idalmir dos Santos ◽  
Betania Brum De Bortoli ◽  
Paula Steilmann ◽  
...  

ABSTRACT The aim of this study was to evaluate the effect of swine manure (SM) doses applied to soils showing pH of 4.8 and 7.2 on the control of damping-off in beetroot seedlings caused by Rhizoctonia solani. To set the trial, plastic bags were filled with 4 kg soil (pH levels of 4.8 and 7.2) and 15 g R. solani inoculum kg soil-1. This mixture was moistened, homogenized and kept in a greenhouse for seven days. Following this period, SM doses (0, 5, 10, 15 and 20%) were incorporated into the bags, which were again stored in a greenhouse. After seven days, part of the soil from each plastic bag was separately placed into 16 cells of a 128-cell polystyrene tray, and two beetroot seeds were sown per cell. Seedling emergence and damping-off were evaluated for 21 consecutive days. The other part of the soil was used for microbial activity quantification based on the CO2 release method at 7, 14 and 21 days. The trial was conducted in a completely randomized design, with four replicates per treatment, and repeated twice. All tested SM doses reduced the number of damped-off beetroot seedlings in both trials, and the greatest disease control was provided by treatments that had SM doses of 15% and 20% applied to soil showing pH level of 7.2. In addition, regardless of the pH level, all tested SM doses increased soil microbial activity.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 491
Author(s):  
Ana Carolina Costa Arantes ◽  
Simone Raposo Cotta ◽  
Patrícia Marluci da Conceição ◽  
Silvana Perissatto Meneghin ◽  
Rodrigo Martinelli ◽  
...  

Techniques such as intercropping and minimum tillage improve soil quality, including soil microbial activity, which stimulates the efficient use of soil resources by plants. However, the effects of such practices in soil under citrus orchards have not been well characterized. In this study, we aimed to determine the effects of mowing and intercrop species on soil microbiological characteristics beneath a Tahiti acid lime orchard. The orchard was planted using minimum tillage and intercropped with two species of Urochloa species (U. ruziziensis—ruzi grass; U. decumbens—signal grass), with two types of mowers for Urochloa biomass (ecological; conventional) and herbicide applications. The study was conducted over 10 years. The ecological mower made the largest deposition of the intercrop biomass, thus providing the lowest disturbance of soil microbial activity and increasing, on average over all 10 years, the basal soil respiration (45%), microbial biomass carbon (25%), abundance of 16S rRNA (1.5%) and ITS (3.5%) genes, and arbuscular mycorrhizal fungi (30%), and providing a ca. 20% higher fruit yield. U. ruziziensis in combination with ecological mowing stimulated the abundance of the genes nifH (1.5%) and phoD (3.0%). The herbicide showed little influence. We conclude that the use of U. ruziziensis as an intercrop in citrus orchards subjected to ecological mowing can be recommended for improving and sustaining soil quality and citrus fruit production.


Sign in / Sign up

Export Citation Format

Share Document