scholarly journals Encapsulation of Phase Change Materials Using Layer-by-Layer Assembled Polyelectrolytes

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Qiangying Yi ◽  
Gleb B. Sukhorokov ◽  
Jin Ma ◽  
Xiaobo Yang ◽  
Zhongwei Gu

Phase change materials absorb the thermal energy when changing their phases (e.g., solid-to-liquid) at constant temperatures to achieve the latent heat storage. The major drawbacks such as limited thermal conductivity and leakage prevent the PCMs from wide application in desired areas. In this work, an environmentally friendly and low cost approach, layer-by-layer (LbL) assembly technique, was applied to build up ultrathin shells to encapsulate the PCMs and therefore to regulate their changes in volume when the phase change occurs. Generally, the oppositely charged strong polyelectrolytes Poly(diallyldimethylammonium chloride) (PDADMAC) and Poly(4-styrenesulfonic acid) sodium salt (PSS) were employed to fabricate multilayer shells on emulsified octadecane droplets using either bovine serum albumin (BSA) or sodium dodecyl sulfate (SDS) as surfactant. Specifically, using BSA as the surfactant, polyelectrolyte encapsulated octadecane spheres in size of ∼500 nm were obtained, with good shell integrity, high octadecane content (91.3% by mass), and good thermal stability after cycles of thermal treatments.

Author(s):  
Sunita Routray ◽  
Vishal Agarwal ◽  
Ranjita Swain ◽  
Rudra Narayan Mohapatro

Abstract: Phase Change Materials (PCMs) are used in a latent heat storage system for storing thermal energy. The thermal conductivity of PCMs is enhanced by macro encapsulation for large-scale use. This technique not only provides a self-supporting structure of PCM, also separates the PCM from thermal fluids and enhances the heat transfer rate. The current work involves the study of encapsulation of low-cost inorganic PCMs, such as Sodium nitrate (NaNO3), in a temperature range of 300 – 500˚C. Silicate coating is also applied to PCM capsules. A Solar water heater is then designed using the macro encapsulated PCM. The water heater consists of copper cylindrical pipes, filled with the phase change material. The efficiency of the solar water heater is found to be 22.5%.


2017 ◽  
Vol 891 ◽  
pp. 509-515
Author(s):  
Jaroslav Jerz ◽  
Peter Tobolka ◽  
Martin Nosko ◽  
Tomáš Dvorák

The development of efficient materials for heat storage has become recently a popular research topic as amount of energy gained from solar power depends significantly on day and night cycle. That's why the right choice of material for heat storage directly affects the utilization efficiency of solar thermal energy. Research on heat storage materials nowadays focuses on phase change materials (PCMs) enabling repeatedly utilize the latent heat of the phase transition between the solid and liquid phase. Most currently used PCMs have low thermal conductivity, which prevents them from overcoming problem of rapid load changes in the charging and discharging processes. To overcome this obstacle and to obtain excellent heat storage possibility, various techniques have been proposed for enhancing the thermal conductivity of PCMs, such as adding metallic or nonmetallic particles, in-corporating of porous or expanded materials, fibrous materials, macro-, micro-, or nanocapsules, etc.The authors of this study report particularly the huge potential of oxide nanoadditives, such as titania (TiO2), alumina (Al2O3), silica (SiO2) and zinc oxide (ZnO), that are even in small quantities (up to 3 wt.%) able significantly to enhance the heat storage characteristics of conventional PCMs. Moreover, the microstructure of the granules produced by recycling of aluminum scrap refers to the possibility of their utilizing for the purpose of low cost solutions enabling to increase the thermal conductivity of PCMs. The above mentioned technical solutions are therefore the important keys to successful commercialization of materials for latent heat storage in future building industry.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3033
Author(s):  
Anastasia Stamatiou ◽  
Lukas Müller ◽  
Roger Zimmermann ◽  
Jamie Hillis ◽  
David Oliver ◽  
...  

Latent heat storage units for refrigeration processes are promising as alternatives to water/glycol-based storage due to their significantly higher energy densities, which would lead to more compact and potentially more cost-effective storages. In this study, important thermophysical properties of five phase change material (PCM) candidates are determined in the temperature range between −22 and −35 °C and their compatibility with relevant metals and polymers is investigated. The goal is to complement existing scattered information in literature and to apply a consistent testing methodology to all PCMs, to enable a more reliable comparison between them. More specifically, the enthalpy of fusion, melting point, density, compatibility with aluminum, copper, polyethylene (PE), polypropylene (PP), neoprene and butyl rubber, are experimentally determined for 1-heptanol, n-decane, propionic acid, NaCl/water mixtures, and Al(NO3)3/water mixtures. The results of the investigations reveal individual strengths and weaknesses of the five candidates. Further, 23.3 wt.% NaCl in water stands out for its very high volumetric energy density and n-decane follows with a lower energy density but better compatibility with surrounding materials and supercooling performance. The importance of using consistent methodologies to determine thermophysical properties when the goal is to compare PCM performance is highlighted.


2018 ◽  
Vol 40 (5) ◽  
pp. 560-575
Author(s):  
Jehanzeb Ahmad ◽  
M Najam Ul Islam ◽  
Jawwad Sabir

The benefits of thermal energy storage using phase change materials are well documented in the literature. Despite all the potential benefits of thermal energy storage, its commercial and widespread application remains limited. This is due to the high initial cost of phase change materials, extensive rework required in buildings, major modifications in HVAC systems, and the potential for leakage, fire and toxicity hazards. There is a strong need for a simple thermal energy storage solution which can be adopted by large number of consumers. Ductless split air-conditioners are portable, low cost, efficient and account for 70% of all air-conditioning systems sold worldwide each year. The present research provides a novel and low cost solution that incorporates thermal energy storage in these air conditioners, allowing them to run without electricity for 3 h. The paper deals with the detailed design aspects and engineering challenges that arise when incorporating thermal energy storage in these small units. A prototype air-conditioner with in-built thermal energy storage was developed, and all performance parameters presented have been validated through data obtained from the prototype. Our results indicate that thermal energy storage can be incorporated in split units in low cost and with minimal drop in overall energy efficiency of the system. Practical application: Incorporating thermal energy storage in split air-conditioners which enables them to run without grid for many hours has immense practical applications. Since around 50% power in any building is consumed by HVAC systems, being able to provide cooling during peak hours without using grid can significantly reduce load on the grid without compromising user comfort. For developing countries where load shedding is frequent, the users can run these air-conditioners without the use of generators or batteries thus saving costs and the environment.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


RSC Advances ◽  
2015 ◽  
Vol 5 (72) ◽  
pp. 58499-58503 ◽  
Author(s):  
Shiwei Wang ◽  
Zhuo Chen ◽  
Ahmad Umar ◽  
Yao Wang ◽  
Peng-gang Yin

Single component was used to construct conjugated polymer multilayer films by electric-field induced layer-by-layer assembly technique, which provides a universal approach for CPs and broadens the applicable scope of LBL assembly technique.


2019 ◽  
Vol 9 (2) ◽  
pp. 225 ◽  
Author(s):  
Rebecca Ravotti ◽  
Oliver Fellmann ◽  
Nicolas Lardon ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

As global energy demand increases while primary sources and fossil fuels’ availability decrease, research has shifted its focus to thermal energy storage systems as alternative technologies able to cover for the mismatch between demand and supply. Among the different phase change materials available, esters possess particularly favorable properties with reported high enthalpies of fusion, low corrosivity, low toxicity, low supercooling, thermal and chemical stability as well as biodegradability and being derived from renewable feedstock. Despite such advantages, little to no data on the thermal behavior of esters is available due to low commercial availability. This study constitutes a continuation of previous works from the authors on the investigation of fatty esters as novel phase change materials. Here, methyl, pentyl and decyl esters of arachidic acid, and pentyl esters of myristic, palmitic, stearic and behenic acid are synthesized through Fischer esterification with high purities and their properties are studied. The chemical structures and purities are confirmed through Attenuated Total Reflectance Infrared Spectroscopy, Gas Chromatography coupled with Mass Spectroscopy and Nuclear Magnetic Resonance Spectroscopy, while the determination of the thermal properties is performed through Differential Scanning Calorimetry and Thermogravimetric Analysis. In conclusion, some correlations between the melting temperatures and the chemical structures are discovered, and the fatty esters are assessed based on their suitability as phase change materials for latent heat storage applications.


Sign in / Sign up

Export Citation Format

Share Document