scholarly journals Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
N. V. Dhandapani ◽  
V. S. Thangarasu ◽  
G. Sureshkannan

This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

Author(s):  
M. Kishanth ◽  
P. Rajkamal ◽  
D. Karthikeyan ◽  
K. Anand

In this paper CNC end milling process have been optimized in cutting force and surface roughness based on the three process parameters (i.e.) speed, feed rate and depth of cut. Since the end milling process is used for abrading the wear caused is very high, in order to reduce the wear caused by high cutting force and to decrease the surface roughness, the optimization is much needed for this process. Especially for materials like aluminium 7010, this kind of study is important for further improvement in machining process and also it will improve the stability of the machine.


2013 ◽  
Author(s):  
◽  
Khaled A. M. Adem

This dissertation outlines research on studying the effects of machining parameters such that cutting speed, feed rate, axial depth of cut, radial depth of cut and helix angle on system dynamic stability and the surface quality of high-speed milling. With the use of structural tool modal parameters, the material cutting force coefficients and the axial depth of cut, the system can avoid the chatter phenomenon of the tool at high cutting speeds. The surface roughness finish in the milling process is determined by the machining parameters and tool structure dynamics. To perform high-speed milling, the chance of tool vibration (chatter phenomenon) which affects the cutting tool, must be minimized or eliminated. In this research, the linear and nonlinear mathematical force models including the effect of the helix angle are presented for an end-milling process. The linear force model includes cutting-edge coefficients. The cutting force coefficients are determined for an end-milling process using two methods, the average force method and the optimization technique method. The second method is developed to identify the cutting force coefficients in the milling process by forming the objective functions using the optimization technique to minimize the error between the experimental and the analytical forces. Moreover, this method produced a good force model that approximates the experimental force results, which compared with the average force method. The stability lobe diagrams are created using the analytical method to determine whether the cut is stable or unstable. In addition, simulations are performed to predict stability of the milling process. By comparing simulated and experimental results, the dynamics and stability of the milling operation can be easily identified before performing any cutting operation. The slot milling experiments show that while the system in the chatter region close to the stability limits and the axial depth of cut increased, the system changes from stable chatter to chaotic chatter. Furthermore, the nature of bifurcation in milling is investigated by performing experiments and simulations. The linear and nonlinear mathematical force models are used for simulating end-milling process. Simulated bifurcation diagrams are generated using both models and compared to experimental results. In addition, the effect of the feed rate on the location of the bifurcation point (start and end of bifurcation) is studied. By comparing simulated and experimental results, the simulation using a nonlinear force model is found more accurate in predicting the dynamics and stability of the milling operation. The applications of Taguchi and response surface methodologies (RSM) are used to minimize the surface roughness in the end milling process. Taguchi’s method for optimum selection of the milling process parameters is applied based on the signal to noise ratio and ANOVA analysis of the surface finish. A second-order model contains quadratic terms that have been created between the cutting parameters and surface roughness using response surface methodology (RSM). Surface roughness of the machined surfaces are measured and used to identify the optimum levels of the milling parameters. Based on Taguchi, ANOVA, and RSM analyses, the end milling process can be optimized to improve surface finish quality and machining productivity.


2015 ◽  
Vol 1115 ◽  
pp. 12-15
Author(s):  
Nur Atiqah ◽  
Mohammad Yeakub Ali ◽  
Abdul Rahman Mohamed ◽  
Md. Sazzad Hossein Chowdhury

Micro end milling is one of the most important micromachining process and widely used for producing miniaturized components with high accuracy and surface finish. This paper present the influence of three micro end milling process parameters; spindle speed, feed rate, and depth of cut on surface roughness (Ra) and material removal rate (MRR). The machining was performed using multi-process micro machine tools (DT-110 Mikrotools Inc., Singapore) with poly methyl methacrylate (PMMA) as the workpiece and tungsten carbide as its tool. To develop the mathematical model for the responses in high speed micro end milling machining, Taguchi design has been used to design the experiment by using the orthogonal array of three levels L18 (21×37). The developed models were used for multiple response optimizations by desirability function approach to obtain minimum Ra and maximum MRR. The optimized values of Ra and MRR were 128.24 nm, and 0.0463 mg/min, respectively obtained at spindle speed of 30000 rpm, feed rate of 2.65 mm/min, and depth of cut of 40 μm. The analysis of variance revealed that spindle speeds are the most influential parameters on Ra. The optimization of MRR is mostly influence by feed rate. Keywords:Micromilling,surfaceroughness,MRR,PMMA


2007 ◽  
Vol 339 ◽  
pp. 189-194
Author(s):  
Su Yu Wang ◽  
Xing Ai ◽  
Jun Zhao

Predictive models are presented for the surface roughness in high-speed end milling of 0.45%C steel and P20 die-mould steel based on statistical test and multiple-regression analysis. The data for establishing model is derived from experiments conducted on a high-speed machining centre by factorial design of experiments. The significances of the regression equation and regression coefficients are tested in this paper. The effects of milling parameters on surface roughness are investigated by analyzing the experimental curves.


2015 ◽  
Vol 799-800 ◽  
pp. 324-328
Author(s):  
Panrawee Yaisuk ◽  
Somkiat Tangjitsitcharoen

The surface roughness is monitored using the cutting force and the cutting temperature in the ball-end milling process by utilizing the response surface analysis with the Box-Behnken design. The optimum cutting condition is obtained referring to the minimum surface roughness, which is the spindle speed, the feed rate, the depth of cut, and the tool diameter. The models of cutting force ratio and the cutting temperature are proposed and developed based on the experimental results. It is understood that the surface roughness is improved with an increase in spindle speed, feed rate and depth of cut. The cutting temperature decreases with an increase in tool diameter. The model verification has showed that the experimentally obtained surface roughness model is reliable and accurate to estimate the surface roughness.


2011 ◽  
Vol 325 ◽  
pp. 594-599 ◽  
Author(s):  
Hiroo Shizuka ◽  
Koichi Okuda ◽  
Masayuki Nunobiki ◽  
Yasuhito Inada

The effects of cutting conditions on the surface roughness in a micro-end-milling process of a mold material are described in this paper. Micro-end-milling operations were performed under different cutting conditions such as feed rate and depth of cut, in order to investigate the factors that had the greatest influence on the finished surface during micro-end-milling. It was revealed that the surface roughness begins to deteriorate when the radial depth of the cut exceeds the tool radius. In addition, it was found that this phenomenon is peculiar to micro-end-milling processes.


2013 ◽  
Vol 773-774 ◽  
pp. 437-447
Author(s):  
Moola Mohan Reddy ◽  
Alexander Gorin ◽  
Abou Ei Hossein A. Khaled ◽  
D. Sujan

This research presents the performance of Aluminum nitride ceramic in end milling using using TiAlN and TiN coated carbide tool insert under dry machining. The surface roughness of the work piece and tool wear was analyzed in this. The design of experiments (DOE) approach using Response surface methodology was implemented to optimize the cutting parameters of a computer numerical control (CNC) end milling machine. The analysis of variance (ANOVA) was adapted to identify the most influential factors on the CNC end milling process. The mathematical predictive model developed for surface roughness and tool wear in terms of cutting speed, feed rate, and depth of cut. The cutting speed is found to be the most significant factor affecting the surface roughness of work piece and tool wear in end milling process.


2015 ◽  
Vol 813-814 ◽  
pp. 362-367 ◽  
Author(s):  
Darshan A. Patel ◽  
Jitendra M. Mistry ◽  
Vrushit P. Kapatel ◽  
Dhaval R. Joshi

The end milling process is most commonly used where the large amount material can be removed to produce almost final shape of component. The present work deals with the experimental study and optimization the machining parameter of AISI 304 stainless steel. The effects of spindle speed, feed rate and depth of cut have been studied on the cutting force and surface roughness using Taguchi’s 27 orthogonal arrays. Regression analyses were used to develop the model of response parameters. The analysis of the result shows, the surface roughness and the cutting force is increased with feed rate and depth of cut but decreased with increased the cutting speed. The ANOVA indicate the feed rate was the most dominate parameter on surface roughness and cutting force than speed and depth of cut.


Sign in / Sign up

Export Citation Format

Share Document