scholarly journals The Core/Shell Structure of CdSe/ZnS Quantum Dots Characterized by X-Ray Absorption Fine Spectroscopy

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Huijing Wei ◽  
Jing Zhou ◽  
Linjuan Zhang ◽  
Fang Wang ◽  
Jianqiang Wang ◽  
...  

Understanding the chemical and physical properties of core/shell nanocrystal quantum dots (QDs) is key for their use in light-emission applications. In this paper, a single-step injection-free scalable synthetic method is applied to prepare high-quality core/shell QDs with emission wavelengths of 544 nm, 601 nm, and 634 nm. X-ray absorption fine structure spectra are used to determine the core/shell structure of CdSe/ZnS quantum dots. Moreover, theoretical XANES spectra calculated by FEFF.8.20 are used to determine the structure of Se and S compounds. The QD samples displayed nearly spherical shapes with diameters of approximately 3.4 ± 0.5 nm (634 nm), 4.5 ± 0.4 nm (601 nm), and 5.5 ± 0.5 nm (544 nm). With XANES results and MS calculations, it is indicated that sphalerite ZnS capped with organic sulfur ligands should be the shell structure. Wurtzite CdSe is the main core structure with a Cd-Se bond length of 2.3 Å without phase shift. This means that different emission wavelengths are only due to the crystal size with single-step injection-free synthesis. Therefore, single-step injection-free synthesis could generate a nearly ideal core/shell structure of CdSe/ZnS QDs capped with an organic sulfur ligand.

ACS Nano ◽  
2014 ◽  
Vol 8 (3) ◽  
pp. 2639-2648 ◽  
Author(s):  
Loredana Protesescu ◽  
Aaron J. Rossini ◽  
Dominik Kriegner ◽  
Maxence Valla ◽  
Antoine de Kergommeaux ◽  
...  

2019 ◽  
Vol 7 ◽  
Author(s):  
Karl David Wegner ◽  
Fanny Dussert ◽  
Delphine Truffier-Boutry ◽  
Anass Benayad ◽  
David Beal ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 359-363
Author(s):  
Yan Li Wu ◽  
Min Liao ◽  
Hai Xin Ding ◽  
Ru Chun Yang ◽  
Dan Dan Xiong ◽  
...  

The SiO2/NaGdF4:Eu3+ core/shell composite was prepared by a template-mediated method, making monodispersed SiO2 as core and NaGdF4:Eu colloids as shell, the morphology and the core-shell structure of the resulting particles were analyzed by SEM,X-ray diffraction, and the photo-luminescence and magnetic properties of the microspheres were investigated too. The results shows the composite have great potential to be used as homogeneous magnetic/optical bifunctional material.


2010 ◽  
Vol 25 (4) ◽  
pp. 711-717 ◽  
Author(s):  
Wei-Qiang Han ◽  
Dong Su ◽  
Michael Murphy ◽  
Matthew Ward ◽  
Tsun-Kong Sham ◽  
...  

PtPd@Pt core-shell ultrathin nanowires were prepared using a one-step phase-transfer approach. The diameters of the nanowires range from 2 to 3 nm, and their lengths are up to hundreds of nanometers. Line scanning electron energy loss spectra showed that PtPd bimetallic nanowires have a core-shell structure, with a PtPd alloy core and a Pt monolayer shell. X-ray absorption near edge structure (XANES) spectra reveal that a strong Pt-Pd interaction exists in this nanowire system in that there is PtPd alloying and/or interfacial interaction. Extended x-ray absorption fine structures (EXAFS) further confirms the PtPd@Pt core-shell structure. The bimetallic nanowires were determined to be face-centered cubic structures. The long-chain organic molecules of n-dodecyl trimethylammonium bromide and octadecylamine, used as surfactants during synthesis, were clearly observed using aberration-corrected TEM operated at 80 KV. The interaction of Pt and surfactants was also revealed by EXAFS.


2016 ◽  
Vol 45 (2) ◽  
pp. 99-105
Author(s):  
Yoshio Kobayashi ◽  
Tetsuya Ayame ◽  
Kyosuke Shibuya ◽  
Tomohiko Nakagawa ◽  
Yohsuke Kubota ◽  
...  

Purpose – This paper aims to propose a simple method for stabilizing silica-coated silver iodide (AgI/SiO2) core-shell particles, of which a colloid solution functions as an X-ray contrast agent. Design/methodology/approach – A colloid solution of AgI nanoparticles was prepared by mixing silver perchlorate and potassium iodide in water. The AgI/SiO2 nanoparticles were fabricated by a sol-gel method using NaOH, H2O and tetraethylorthosilicate in ethanol in the presence of AgI nanoparticles surface-modified with 3-mercaptopropyltrimethoxysilane. Findings – The silica shells of AgI/SiO2 particles were dissolved near the AgI nanoparticle surface, when they were washed by a process composed of centrifugation, removal of supernatant with decantation, addition of water as a washing solution and a shake with a vortex mixer. In contrast, the shells were not damaged by using ethanol as the washing solution, i.e. ethanol-washing. An X-ray photoelectron spectroscopy spectrum of the silica was changed after the ethanol-washing, which indicated that the ethanol-washing had an effect on the chemical bonds in silica. The effect also acted on the silica shells of AgI/SiO2 particles, which did not damage the core-shell structure, i.e. controlled the dissolution of shell. Originality/value – The paper demonstrates that the ethanol-washing is quite useful for stabilizing the core-shell structure composed of the silica shells.


Langmuir ◽  
2002 ◽  
Vol 18 (21) ◽  
pp. 7780-7784 ◽  
Author(s):  
Shiyong Liu ◽  
Yinghua Ma ◽  
Steven P. Armes ◽  
C. Perruchot ◽  
J. F. Watts

2005 ◽  
Vol 04 (05n06) ◽  
pp. 987-994 ◽  
Author(s):  
P. S. GOYAL ◽  
V. K. ASWAL

Small Angle Neutron Scattering (SANS) and Small Angle X-ray Scattering (SAXS), anong other available techniques, are the nost sought after techniques for studying the sizes and shapes of nanoparticles. The contrast between particle and its surrounding is different for X-rays and neutrons. Thus a combined SANS and SAXS study, at times, provides information about the core and the shell structure of nanoparticles. This paper gives an introduction to the techniques of SANS and SAXS and shows results of a study of core-shell structure for a micelle (nanaoparticle of organic material).


2014 ◽  
Vol 602-603 ◽  
pp. 59-62
Author(s):  
Jing Xie ◽  
Le Fu Mei ◽  
Li Bing Liao ◽  
Guo Cheng Lv ◽  
Zhi Guo Xia ◽  
...  

In this paper, the monodisperse TiO2 particles and TiO2 coated SiO2 core-shell particles were prepared by the method of microemulsion, and the phase and morphology of TiO2 and TiO2 coated SiO2 core-shell structure particles were analyzed by using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). At the same time, the phase changes and morphology changes of the two different kinds of structural particles as the changes of sintering temperature were compared. The results show that when the TiO2 particles were prepared by the method of microemulsion, the content of anatase TiO2 decreased gradually and the rutile TiO2 increased gradually as the sintering temperature increases from 550 °C to 650 °C; the core-shell particles of TiO2 coated SiO2 prepared were anatase when the sintering temperature increases from 600 °C to 800 °C; all of the particles size were about 1μm, the monodispersity of the particles were optimal and the particles were coated evenly, smoothly. Keywords: TiO2; SiO2; core-shell structure


Sign in / Sign up

Export Citation Format

Share Document