scholarly journals Development of an Evaluating Method for Carbon Emissions of Manufacturing Process Plans

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yanhong Wang ◽  
Hua Zhang ◽  
Zhiqing Zhang ◽  
Jing Wang

Carbon intensity reduction and energy utilization enhancement in manufacturing industry are becoming a timely topic. In a manufacturing system, the process planning is the combination of all production factors which influences the entail carbon emissions during manufacturing. In order to meet the current low carbon manufacturing requirements, a carbon emission evaluation method for the manufacturing process planning is highly desirable to be developed. This work presents a method to evaluate the carbon emissions of a process plan by aggregating the unit process to form a combined model for evaluating carbon emissions. The evaluating results can be used to decrease the resource and energy consumption and pinpoint detailed breakdown of the influences between manufacturing process plan and carbon emissions. Finally, the carbon emission analysis method is applied to a process plan of an axis to examine its feasibility and validity.

2015 ◽  
Vol 1092-1093 ◽  
pp. 1597-1600
Author(s):  
Zhong Hua Wang ◽  
Xin Ye Chen

The need to reduce carbon emission in Heilongjiang Province of China is urgent challenge facing sustainable development. This paper aims to make explicit the problem-solving of carbon emission to find low carbon emission ways. According to domestic and foreign literatures on estimating and calculating carbon emissions and by integrating calculation methods of carbon emissions, it was not possible to consider all of the many contributions to carbon emissions. Calculation model of carbon emissions suitable to this paper is selected. The carbon emissions of energy consumption in mining industry are estimated and calculated from 2005 to 2012, and the characteristics of carbon emission are analyzed at the provincial level. It makes the point that carbon emissions of energy consumption in mining industry can be reduced when we attempt to alter energy consumption structure, adjust industrial structure and improve energy utilization efficiency.


Author(s):  
M. Marefat ◽  
J. Britanik

Abstract This research focuses on the development of an object-oriented case-based process planner which combines the advantages of the variant and generative approaches to process planning. The case-based process planner operates on general 3D prismatic parts, represented by a collection of features (eg: slots, pockets, holes, etc.). Each feature subplan is developed by the case-based planner. Then the feature subplans are combined into the global process plan for the part via a hierarchical plan merging mechanism. Abstracted feature subplans correspond to cases, which are used in subsequent planning operations to solve new problems. The abstracting and storing of feature subplans as cases is the primary mechanism by which the planner learns from its previous experiences to become more effective and efficient. The computer-aided process planner is designed to be extensible and flexible through the effective use of object-oriented principles.


2021 ◽  
Author(s):  
baoling jin ◽  
ying Han

Abstract The manufacturing industry directly reflects national productivity, and it is also an industry with serious carbon emissions, which has attracted wide attention. This study decomposes the influential factors on carbon emissions in China’s manufacturing industry from 1995 to 2018 into industry value added (IVA), energy consumption (E), fixed asset investment (FAI), carbon productivity (CP), energy structure (EC), energy intensity (EI), investment carbon intensity (ICI) and investment efficiency (IE) by Generalized Divisia Index Model (GDIM). The decoupling analysis is carried out to investigate the decoupling states of the manufacturing industry under the pressure of "low carbon" and "economy.” Considering the technological heterogeneity, we study the influential factors and decoupling status of the light industry and the heavy industry. The results show that: (1) Carbon emissions of the manufacturing industry present an upward trend, and the heavy industry is the main contributor. (2) Fixed asset investment (FAI), industry value added (IVA) are the driving forces of carbon emissions. Investment carbon intensity (ICI), carbon productivity (CP), investment efficiency (IE), and energy intensity (EI) have inhibitory effects. The impact of the energy consumption (E) and energy structure (EC) are fluctuating. (3) The decoupling state of the manufacturing industry has improved. Fixed asset investment (FAI), industry value added (IVA) hinder the decoupling; carbon productivity (CP), investment carbon intensity (ICI), investment efficiency (IE), and energy intensity (EI) promote the decoupling.


2021 ◽  
Vol 245 ◽  
pp. 01020
Author(s):  
Aixia Xu ◽  
Xiaoyong Yang

The input-output method is employed in this study to measure the total carbon emission of the logistics industry in Guangdong. The findings revealed that the carbon emission of direct energy consumption of the logistics industry in Guangdong is far above the actual carbon emissions, the second and third industries play a significant role in carbon emission of indirect energy consumption in the logistics industry in Guangdong. To reduce energy consumption and carbon emissions in Guangdong, it is not only important to control the carbon emissions in the logistics industry, but strengthen carbon emission detection in relevant industries, improve the energy utilization rate and reduce emissions in other industries, and move towards low-carbon sustainable development.


2019 ◽  
Vol 11 (3) ◽  
pp. 914 ◽  
Author(s):  
Jianguo Zhou ◽  
Yushuo Li ◽  
Xuejing Huo ◽  
Xiaolei Xu

With the official launch of China’s national unified carbon trading system (ETS) in 2017, it has played an increasingly important role in controlling the growth of carbon dioxide emissions. One of the core issues in carbon trading is the allocation of initial carbon emissions permits. Since the industry emits the largest amount of carbon dioxide in China, a study on the allocation of carbon emission permits among China’s industrial sectors is necessary to promote industry carbon abatement efficiency. In this study, industrial carbon emissions permits are allocated to 37 sub-sectors of China to reach the emission reduction target of 2030 considering the carbon marginal abatement cost, carbon abatement responsibility, carbon abatement potential, and carbon abatement capacity. A hybrid approach that integrates data envelop analysis (DEA), the analytic hierarchy process (AHP), and principal component analysis (PCA) is proposed to allocate carbon emission permits. The results of this study are as follows: First, under the constraint of carbon intensity, the carbon emission permits of the total industry in 2030 will be 8792 Mt with an average growth rate of 3.27%, which is 1.57 times higher than that in 2016. Second, the results of the carbon marginal abatement costs show that light industrial sectors and high-tech industrial sectors have a higher abatement cost, while energy-intensive heavy chemical industries have a lower abatement cost. Third, based on the allocation results, there are six industrial sub-sectors that have obtained major carbon emission permits, including the smelting and pressing of ferrous metals (S24), manufacturing of raw chemical materials and chemical products (S18), manufacturing of non-metallic mineral products (S23), smelting and pressing of non-ferrous metals (S25), production and supply of electric power and heat power (S35), and the processing of petroleum, coking, and processing of nuclear fuel (S19), accounting for 69.23% of the total carbon emissions permits. Furthermore, the study also classifies 37 industrial sectors to explore the emission reduction paths, and proposes corresponding policy recommendations for different categories.


2013 ◽  
Vol 448-453 ◽  
pp. 4281-4284 ◽  
Author(s):  
Shao Bo Liu

Using IPCC methodology, the carbon emissions of Chinese Northeast Old Industrial Base is calculated, and the energy's synthesized impact on carbon emissions intensity is presented. The resulting shows that the carbon emissions in the three northeast provinces decreased 52.87% from 2000 to 2010, of which, Liaoning, Jilin and Heilongjiang are individually 60.09%, 45.47% and 54.14% lower. The implications are that the energy structure is one of the main factors in carbon emission in the Old Industrial Base of Northeast China, and its industrial structure is changing greatly due to energy consumption carbon emission. To adjust optimally the energy and industrial structure, and to develop the energy technology to promote energy utilization are recommended.


2020 ◽  
Vol 7 (2) ◽  
pp. p34
Author(s):  
Yang Kaixi

This paper mainly studies the relationship between traffic status and carbon emission, and the evaluation method of carbon emission based on traffic status. First of all, the traffic status is defined. In this paper, the traffic status is divided into traffic congestion and unobstructed traffic. Then, this paper analyzes the influence of different traffic conditions on carbon emissions in the same fleet at the same time through the study of vehicle exhaust emissions in both the unobstructed and congested traffic conditions. The unobstructed section traffic is used to simulate the unobstructed traffic state, and the intersection is used to simulate the traffic congestion. Finally, the two kinds of carbon emission data are compared to obtain the impact of traffic status on carbon emissions.


2021 ◽  
Vol 13 (17) ◽  
pp. 9822
Author(s):  
Tao Li ◽  
Ang Li ◽  
Yimiao Song

With the proposed target of carbon peak and carbon neutralization, the development and utilization of renewable energy with the goal of carbon emission reduction is becoming increasingly important in China. We used the analytic hierarchy process (ANP) and a variety of MCDM methods to quantitatively evaluate renewable energy indicators. This study measured the sequence and differences of the development and utilization of renewable energy in different regions from the point of view of carbon emission reduction, which provides a new analytical perspective for the utilization and distribution of renewable energy in China and a solution based on renewable energy for achieving the goal of carbon emission reduction as soon as possible. The reliability of the evaluation system was further enhanced by confirmation through a variety of methods. The results show that the environment and carbon dimensions are the primary criteria to evaluate the priority of renewable energy under carbon emission reduction. In the overall choice of renewable energy, photovoltaic energy is the best solution. After dividing regions according to carbon emission intensity and resource endowment, areas with serious carbon emissions are suitable for the development of hydropower; areas with sub-serious carbon emissions should give priority to the development of photovoltaic or wind power; high-carbon intensity area I should vigorously develop wind power; high-carbon intensity area II should focus on developing photovoltaic power; second high-carbon intensity areas I and II are suitable for the development of wind power and photovoltaic power; and second high-carbon intensity areas III and IV are the most suitable for hydropower.


Author(s):  
Xiangyu Zhou ◽  
Junqi Yan ◽  
Yi Jin ◽  
Dengzhe Ma ◽  
Zhi-Kui Ling

Abstract Process Planning of a product determines the process activities during its manufacturing process. Transformation of the product from design to its final form by process planning is controlled by its manufacturing environment. In this paper, the systematic representation of a manufacturing environment and a hierarchical data model to represent a process plan is studied and introduced for the flexibility of the Computer Aided Process Planning (CAPP) system and for the integration purpose. An event-driven architecture for the design of general CAPP systems is established based on these models. A CAPP system (U-CAPP) developed by the authors based on these concepts is briefly described.


Sign in / Sign up

Export Citation Format

Share Document