Simultaneous sewage treatment and electricity generation in membrane-less microbial fuel cell

2008 ◽  
Vol 58 (1) ◽  
pp. 37-43 ◽  
Author(s):  
M. M. Ghangrekar ◽  
V. B. Shinde

Long term performance of mediator-less and membrane-less microbial fuel cell (ML-MFC) was evaluated for treatment of synthetic and actual sewage and electricity harvesting. The anode chamber of ML-MFC was inoculated with pre-heated mixed anaerobic sludge collected from a septic tank. The ML-MFC was operated by feeding synthetic wastewater for first 244 days, under different organic loading rates, and later with actual sewage for next 30 days. Maximum chemical oxygen demand (COD) removal efficiency of 91.4% and 82.7% was achieved while treating synthetic wastewater and actual sewage, respectively. Maximum current of 0.33 mA and 0.17 mA was produced during synthetic and actual sewage treatment, respectively. Maximum power density of 6.73 mW/m2 (13.65 mW/m3) and maximum current density of 70.74 mA/m2 was obtained in this membrane-less MFC with successful organic matter removal from wastewater.

Author(s):  
Aris Mukimin ◽  
Nur Zen ◽  
Hanny Vistanty ◽  
Purwanto Agus

Microbial fuel cell (MFC) is a new proposed technology reported to generate renewable energy while simultaneously treating wastewater. Membraneless microbial fuel cell (ML-MFC) system was developed to eliminate the requirement of membrane which is expensive and prone to clogging while enhancing electricity generation and wastewater treatment efficiency. For this purpose, a reactor was designed in two chambers and connected via three pipes (1 cm in diameter) to enhance fluid diffusion. Influent flowrate was maintained by adjusting peristaltic pump at the base of anaerobic chamber. Carbon cloth (235 cm2) was used as anode and paired with gas diffusion layer (GDL) carbon-Pt as cathode. Anaerobic sludge was filtered and used as starter feed for the anaerobic chamber. The experiment was carried out by feeding synthetic wastewater to anaerobic chamber; while current response and potential were recorded. Performance of reactor was evaluated in terms of chemical oxygen demand (COD). Electroactive microbe was inoculated from anaerobic sludge and showed current response (0.55-0.65 mA) at 0,35 V, range of diameter 1.5-2 µm. The result of microscopics can showed three different species. The microbial performance was increased by adding ferric oxide 1 mM addition as acceptor electron. The reactor was able to generate current, voltage, and electricity power of 0.36 mA, 110 mV, and 40 mWatt (1.5 Watt/m2), respectively, while reaching COD removal and maximum coulomb efficiency (EC) of 16% and 10.18%, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jian-sheng Huang ◽  
Ping Yang ◽  
Chong-ming Li ◽  
Yong Guo ◽  
Bo Lai ◽  
...  

In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m2. However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m2 when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2231 ◽  
Author(s):  
Hongjun Ni ◽  
Kaixuan Wang ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Lu Zhuo ◽  
...  

The variation of substrate concentration in anode chamber directly affects the power generation efficiency and decontamination performance of microbial fuel cell (MFC). In this study, three concentrations of swine wastewater with 800 mg/L, 1600 mg/L and 2500 mg/L were selected as substrates, and the performance of MFC and response characteristics of anode microbial community were investigated. The results show that the concentration of a selected substrate is positively correlated with the output voltage of MFC and chemical oxygen demand (COD) removal rate. The microbial community diversity in the anode chamber and the performance of battery can be significantly affected when concentration changes in different ways, which helps to selectively cultivate the adaptable dominant bacteria to enhance the stability and decontamination performance of MFC. The community structure of anodic biofilm is mainly composed of Proteobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Spirochaetae. These findings are meaningful to improve the treatment effects of swine wastewater and can help to find out the mechanism of varying concentration that influences the production of microorganisms in MFC.


2021 ◽  
Author(s):  
Asim Ali Yaqoob ◽  
Claudia Guerrero–Barajas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Amira Suriaty Yaakop

Abstract The present work focused on the utilization of three local wastes i.e., rambutan (nephelium lappaceum), langsat (lansium parasiticum) and mango (mangifera indica) wastes as organic substrates in benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic wastewater. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78 % and 80 % removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metals removals and energy generation. Lastly, the BMFC mechanism, challenges and future recommendations are enclosed.


2013 ◽  
Vol 69 (2) ◽  
pp. 293-297 ◽  
Author(s):  
Ling-ling Zhao ◽  
Tian-shun Song

A 10 L upflow microbial fuel cell (UMFC) was constructed for simultaneous carbon and nitrogen removal. During the 6-month operation, the UMFC constantly removed carbon and nitrogen, and then generated electricity with synthetic wastewater as substrate. At 5.0 mg L−1 dissolved oxygen, 100 Ω external resistance, and pH 6.5, the maximum power density (Pmax) and nitrification rate for the UMFC was 19.5 mW m−2 and 17.9 mg·(L d)−1, respectively. In addition, Pmax in the UMFC with chicken manure wastewater as substrate was 16 mW m−2, and a high chemical oxygen demand (COD) removal efficiency of 94.1% in the UMFC was achieved at 50 mM phosphate-buffered saline. Almost all ammonia in the cathode effluent was effectively degraded after biological denitrification in the UMFC cathode. The results can help to further develop pilot-scale microbial fuel cells for simultaneous carbon and nitrogen removal.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3194 ◽  
Author(s):  
Paweł Włodarczyk ◽  
Barbara Włodarczyk

Wastewater originating from the yeast industry is characterized by high concentration of pollutants that need to be reduced before the sludge can be applied, for instance, for fertilization of croplands. As a result of the special requirements associated with the characteristics of this production, huge amounts of wastewater are generated. A microbial fuel cell (MFC) forms a device that can apply wastewater as a fuel. MFC is capable of performing two functions at the same time: wastewater treatment and electricity production. The function of MFC is the production of electricity during bacterial digestion (wastewater treatment). This paper analyzes the possibility of applying yeast wastewater to play the function of a MFC (with Ni–Co cathode). The study was conducted on industrial wastewater from a sewage treatment plant in a factory that processes yeast sewage. The Ni–Co alloy was prepared by application of electrochemical method on a mesh electrode. The results demonstrated that the use of MFC coupled with a Ni–Co cathode led to a reduction in chemical oxygen demand (COD) by 90% during a period that was similar to the time taken for reduction in COD in a reactor with aeration. The power obtained in the MFC was 6.1 mW, whereas the volume of energy obtained during the operation of the cell (20 days) was 1.27 Wh. Although these values are small, the study found that this process can offer an additional level of wastewater treatment as a huge amount of sewage is generated in the process. This would provide an initial reduction in COD (and save the energy needed to aerate wastewater) as well as offer the means to generate electricity.


RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20036-20045
Author(s):  
Taiki Yamane ◽  
Naoko Yoshida ◽  
Mari Sugioka

Calculations of chemical oxygen demand (COD) degradation in sewage by a microbial fuel cell (MFC) were used to estimate the total energy required for treatment of the sewage.


2018 ◽  
Vol 15 (4) ◽  
pp. 981-986 ◽  
Author(s):  
Mohamed E. Osman ◽  
Om-Kolthoum H. Khattab ◽  
Abo Elnasr A.A. ◽  
Abdel Basset S.

A microbial fuel cell (MFC) has great potential for azo dyes decolorization and electricity generation by using filamentous fungi as biocatalysts. In this study, Aspergillus niger and Trichoderma harzianum were inoculated in anode chamber of double-chamber MFC to decolorize azo dye acid black 172 with Potassium Ferricyanide in the cathode chamber. During MFC operations, Acid black 172 oxidized and produced a maximum open-circuit voltage of 890 mV, and maximum current density of 163 mA/m2 with an external resistance of 1000Ω. Also, variable parameters such as dye concentration, Co-substrate and dye as a sole carbon source were studied to improve microbial fuel cell performance.


2014 ◽  
Vol 71 (3) ◽  
pp. 353-358 ◽  
Author(s):  
Praveena Gangadharan ◽  
Indumathi M. Nambi

Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m2 (2.08 mA/m2) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III).


Author(s):  
Jose Tavares de Sousa ◽  
Maria Luciana Dias de Luna Luna ◽  
Israel Nunes Henrique Henrique ◽  
Valderi Duarte Leite Leite ◽  
Wilton Silva Lopes Lopes ◽  
...  

The combination of anaerobic pre-treatment and conventional aerobic technologies in a single compact unit has the potential to afford practical, sustainable and low-cost systems for the decentralized treatment of sewage. The aims of the present study were (i) to determine the efficiencies of a single-family compact (SFC) and a multi-family compact (MFC) station in removing organic matter from domestic sewage, and (ii) to investigate the behavior of aerobic intermittent sand filters (ISFs) regarding nitrification. The SFC station consisted of an upflow anaerobic sludge blanket reactor, an anaerobic upflow bed filter and an aerobic ISF, while the MFC station comprised a septic tank and two ISFs. The mean efficiencies for the removal of total chemical oxygen demand, total suspended solids and total Kjeldahl nitrogen were, respectively, 90, 93 and 75% for the SFC and 87, 91% and 74% for the MFC with ISFs operated at hydraulic loading rates of 380 L.m-2.day-1. The sand filters produced helminth-free effluents that complied with World Health Organization recommendations for water intended for agricultural reuse, although the geometric mean of E. coli counts (104 CFU.100 mL-1) was somewhat high, implying that the treated water was appropriate for irrigation in low-tech agriculture.


Sign in / Sign up

Export Citation Format

Share Document