scholarly journals Stability Testing of a Wide Bone-Anchored Device after Surgery without Skin Thinning

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Malou Hultcrantz

Objective. To longitudinally follow the osseointegration using Resonance Frequency Analysis (RFA) for different lengths of abutment on a new wide bone-anchored implant, introduced with the non-skin thinning surgical technique.Study Design. A single-center, prospective 1 year study following adults with bone-anchored hearing implants.Materials and Methods. Implantation was performed and followed for a minimum of 1 year. All patients were operated on according to the tissue preserving technique. A 4.5 mm wide fixture (Oticon Medical) with varying abutments (9 to 12 mm) was used and RFA was tested 1 week, 7 weeks, 6 months, and 12 months later. Implant Stability Quotient (ISQ), was measured from 1 to 100. Stability was compared to a group of patients(N=7)implanted with another brand (Cochlear BI400) of 4.5 mm fixtures.Results. All 10 adults concluded the study. None of the participants lost their implant during the test period indicating a good anchoring of abutments to the wide fixture tested. Stability testing was shown to vary depending on abutment length and time after surgery and with higher values for shorter abutments and increasing values over the first period of time. One patient changed the abutment from 12 to 9 mm and another from a 9 to a 12 during the year. No severe skin problems, numbness around the implant, or cosmetic problems arose.Conclusion. After 1 year of follow-up, combination of a wide fixture implant and the non-skin thinning surgical technique indicates a safe procedure with good stability and no abutment losses.

2018 ◽  
Vol 44 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Karine Câmara Silva ◽  
Elton Gonçalves Zenóbio ◽  
Paulo Eduardo Alencar Souza ◽  
Rodrigo Villamarim Soares ◽  
Maurício Greco Cosso ◽  
...  

This study aimed to compare the primary and secondary stability, measured by resonance frequency analysis (RFA), in implants of different lengths installed in areas submitted to maxillary sinus lift. Correlation between RFA and implant insertion torque was also assessed. Twenty implants of 9 and 11 mm were inserted in areas submitted to maxillary sinus lift. The insertion torque was measured by the Bien Air motor. Osstell, through RFA, determined the implant stability quotient (ISQ) 2 times: the day of implant installation (T1) and 90 days after implant installation (T2). No differences were observed in the ISQ between T1 and T2 when the 20 implants were grouped, nor when the 9 mm implants were evaluated separately. In contrast, when the 11 mm values were evaluated separately, the ISQ was significantly higher in T2 than in T1 (P < .05). In T1, 9 mm implants had a higher ISQ than 11 mm ones (P < .05), whereas in T2, the implants of 11 mm showed a higher ISQ than did the 9 mm implants (P < .05). There was no difference in insertion torque between 9 and 11 mm implants (P > .05), nor was there a correlation between ISQ and insertion torque (P > .05). In conclusion, longer implants (11 mm) presented a significant increase in ISQ values during the healing period when installed in areas previously submitted to maxillary sinus lift. This phenomenon was not observed for shorter implants (9 mm). Finally, no correlation was observed between ISQ and insertion torque.


2019 ◽  
Vol 9 (5) ◽  
pp. 860 ◽  
Author(s):  
Antonio Nappo ◽  
Carlo Rengo ◽  
Giuseppe Pantaleo ◽  
Gianrico Spagnuolo ◽  
Marco Ferrari

Implant stability is relevant for the correct osseointegration and long-term success of dental implant treatments. The aim of this study has been to evaluate the influence of implant dimensions and position on primary and secondary stability of implants placed in maxilla using resonance frequency analysis. Thirty-one healthy patients who underwent dental implant placement were enrolled for the study. A total of 70 OsseoSpeed TX (Astra Tech Implant System—Dentsply Implants; Mölndal, Sweden) implants were placed. All implants have been placed according to a conventional two-stage surgical procedure according to the manufacturer instructions. Bone quality and implant stability quotient were recorded. Mean implant stability quotient (ISQ) at baseline (ISQ1) was statistically significant lower compared to 3-months post-implant placement (ISQ2) (p < 0.05). Initial implant stability was significantly higher with 4 mm diameter implants with respect to 3.5 mm. No differences were observed within maxilla regions. Implant length, diameter and maxillary regions have an influence on primary stability.


2011 ◽  
Vol 37 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Ashish Thomas Kunnekel ◽  
K. Chandrasekharan Nair ◽  
E. Munirathnam Naidu ◽  
Gomathinayagam Sivagami

Abstract The study was designed to determine the relationship between implant stability quotient (ISQ) values measured using resonance frequency analysis (RFA) and implant-bone distance measured histomorphometrically. Ten identical implants were equally divided into 2 groups based on primary stability at placement. Osteotomies were prepared in harvested goat femurs. ISQ values were measured and compared with implant-bone distance determined by micrometry. Based on the results, it was concluded that RFA can be used to measure implant stability reliably.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Peter Andersson ◽  
Luca Pagliani ◽  
Damiano Verrocchi ◽  
Stefano Volpe ◽  
Herman Sahlin ◽  
...  

Background. Diagnostic instruments based on resonance frequency analysis (RFA) can be utilised to assess dental implant stability during treatment and follow-up. Aim. The aim of the present study was to investigate the influence of patient- and implant-related factors on implant stability and the 5-year implant survival. In addition, the influence of stability (ISQ value) at placement and abutment connection on implant survival was evaluated. Materials and Methods. RFA measurements from a total of 334 consecutive patients with 745 dental implants (Neoss Ltd., Harrogate, UK) were retrospectively analysed after at least 5 years in function. Statistics were used to evaluate the influence of the different variables on implant stability and implant survival. Odds ratio calculations were performed to compare the risk for implant failure using 60, 65, 70, and 75 ISQ as threshold levels at placement and loading. Results. A total of 20 implant failures in 14 patients were noted during the 5 years of follow-up, giving an overall cumulative survival rate (CSR) of 97.3% at the implant level and 95.8% at the patient level. Gender, jaw, position, bone quality, and implant diameter had an influence on implant stability at placement. Jaw, bone quality, and implant diameter had an influence on stability after 3-4 months of healing. More failures were observed in full than in partial rehabilitations. Age, gender, jaw, position, bone quantity, bone quality, implant diameter, and implant length had no influence on implant survival. Implants with ISQ values below the threshold levels showed lower survival rates compared to implants with values above these levels. Conclusions. The present study showed a significantly higher risk for implant failure, showing an ISQ value below 70 and 75 at placement or after 3-4 months of healing. The results indicate that RFA measurements can be used to identify implants with increased risk for failure.


Author(s):  
Paula López-Jarana ◽  
Carmen María Díaz-Castro ◽  
Artur Falcão ◽  
Blanca Ríos-Carrasco ◽  
Ana Fernandez-Palacín ◽  
...  

In order to apply the “one-abutment–one-time” concept, we evaluated the possibility of measuring resonance frequency analysis (RFA) on the abutment. This trial aimed to compare the Implant Stability Quotient (ISQ) values obtained by the PenguinRFA when screwing the transducer onto the implant or onto abutments with different heights and angulations. Eighty implants (VEGA®, Klockner Implant System, SOADCO, Les Escaldes, Andorra) were inserted into fresh bovine ribs. The groups were composed of 20 implants, 12 mm in length, with two diameters (3.5 and 4 mm). Five different abutments for screwed retained restorations (Permanent®) were placed as follows: straight with 1, 2, and 3 mm heights, and angulated at 18° with 2 and 3 mm heights. The mean value of the ISQ measured directly on the implant was 75.72 ± 4.37. The mean value of the ISQ registered over straight abutments was 79.5 ± 8.50, 76.12 ± 6.63, and 71.42 ± 6.86 for 1, 2, and 3 mm height abutments. The mean ISQ over angled abutments of 2 and 3 mm heights were 68.74 ± 4.68 and 64.51 ± 4.53 respectively. The present study demonstrates that, when the ISQ is registered over the straight abutments of 2 and 3 mm heights, the values decrease, and values are lower for angled, 3 mm height abutments.


Author(s):  
Ingrid Kästel ◽  
Giles de Quincey ◽  
Jörg Neugebauer ◽  
Robert Sader ◽  
Peter Gehrke

Abstract Background There is disagreement about the optimal torque for tightening smartpegs for resonance frequency analysis (RFA). Subjective finger pressure during hand tightening could affect the reliability of the resulting values. The aim of the current study was therefore to assess whether or not the insertion torque of a smartpeg magnetic device influences the implant stability quotient (ISQ) value during RFA. Methods Thirty self-tapping screw implants (XiVE S, Dentsply Sirona Implants, Bensheim, Germany) with a diameter of 3.8 mm and a length of 11 mm were inserted in three cow ribs with a bone quality of D1. The RFA value of each implant was measured (Ostell, FA W&H Dentalwerk, Bürmoos, Austria) in two orthogonal directions (mesial and buccal) after tightening the corresponding smartpeg type 45 with a mechanically defined value of 5 Ncm (Meg Torq device, Megagen, Daegu, South Korea) (test). Additionally, 4 different examiners measured the RFA after hand tightening the smartpegs, and the results were compared (control). Insertion torque values were determined by measuring the unscrew torque of hand seated smartpegs (Tohnichi Manufacturing Co. Ltd, Tokyo, Japan). Results The ISQ values varied from 2 to 11 Ncm by hand tightening and from 2 to 6 Ncm by machine tightening. The comparison of hand and machine tightening of smartpegs displayed only minor differences in the mean ISQ values with low standard deviations (mesial 79.76 ± 2,11, buccal 77.98 ± 2,) and no statistical difference (mesial p = 0,343 and buccal p = 0,890). Conclusions Manual tightening of smartpeg transducers allows for an objective and reliable determination of ISQ values during RFA.


Sign in / Sign up

Export Citation Format

Share Document