Validation of Resonance Frequency Analysis by Comparing Implant Stability Quotient Values With Histomorphometric Data

2011 ◽  
Vol 37 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Ashish Thomas Kunnekel ◽  
K. Chandrasekharan Nair ◽  
E. Munirathnam Naidu ◽  
Gomathinayagam Sivagami

Abstract The study was designed to determine the relationship between implant stability quotient (ISQ) values measured using resonance frequency analysis (RFA) and implant-bone distance measured histomorphometrically. Ten identical implants were equally divided into 2 groups based on primary stability at placement. Osteotomies were prepared in harvested goat femurs. ISQ values were measured and compared with implant-bone distance determined by micrometry. Based on the results, it was concluded that RFA can be used to measure implant stability reliably.

2019 ◽  
Vol 9 (5) ◽  
pp. 860 ◽  
Author(s):  
Antonio Nappo ◽  
Carlo Rengo ◽  
Giuseppe Pantaleo ◽  
Gianrico Spagnuolo ◽  
Marco Ferrari

Implant stability is relevant for the correct osseointegration and long-term success of dental implant treatments. The aim of this study has been to evaluate the influence of implant dimensions and position on primary and secondary stability of implants placed in maxilla using resonance frequency analysis. Thirty-one healthy patients who underwent dental implant placement were enrolled for the study. A total of 70 OsseoSpeed TX (Astra Tech Implant System—Dentsply Implants; Mölndal, Sweden) implants were placed. All implants have been placed according to a conventional two-stage surgical procedure according to the manufacturer instructions. Bone quality and implant stability quotient were recorded. Mean implant stability quotient (ISQ) at baseline (ISQ1) was statistically significant lower compared to 3-months post-implant placement (ISQ2) (p < 0.05). Initial implant stability was significantly higher with 4 mm diameter implants with respect to 3.5 mm. No differences were observed within maxilla regions. Implant length, diameter and maxillary regions have an influence on primary stability.


2014 ◽  
Vol 40 (4) ◽  
pp. 438-447 ◽  
Author(s):  
Giorgio Deli ◽  
Vincenzo Petrone ◽  
Valeria De Risi ◽  
Drazen Tadic ◽  
Gregory-George Zafiropoulos

Primary stability is an indicator of subsequent osseointegration of dental implants. However, few studies have compared the implant stability among anatomical regions and bone types; thus, not enough data exist regarding the stability of implants placed in regenerated bone (RB). The present study evaluated primary and long-term stability of implants placed in RB and non-regenerated healed bone (HB). A total of 216 screw cylinder implants were placed in 216 patients (98 in HB and 118 in RB, 6 [RB6, N = 68] or 12 [RB12, N = 50] months after tooth extraction). Implant stability was evaluated using resonance frequency analysis (RFA) measured at the time of implant placement (E1), at the time of loading (4 months after placement, E2), and 4 months after loading (E3). Various clinically relevant measurements were obtained, such as implant diameter, length, and location, as well as bone quality. At E1, implant location, bone quality, and experimental group significantly affected implant stability (all at P &lt; .05). At E2, implant location, diameter, length, and experimental group significantly affected implant stability (all at P &lt; .05). At E3, bone quality, implant diameter, length, and experimental group significantly affected implant stability (all at P &lt; .01). Stability for the RB12 group was significantly higher than all other corresponding values; further, the values did not change significantly over time. For the HB and RB6 groups, stability was significantly higher at E2 than at E1 (P &lt; .001) and was no different between E2 and E3. Implant location, length, and experimental group were associated with these differences (all at P &lt; .05). Compared with HB and RB6, higher implant stability may be achieved in regenerated bone 12 months post-extraction (RB12). This stability was achieved at E1 and maintained for at least 8 months. Variables such as implant length, diameter, and bone quality affected the stability differently over time. Implant stability varied in different anatomic regions and with regard to different healing processes in the bone.


2015 ◽  
Vol 41 (6) ◽  
pp. e281-e286 ◽  
Author(s):  
Sergio Alexandre Gehrke ◽  
Ulisses Tavares da Silva ◽  
Massimo Del Fabbro

The purpose of this study was to assess implant stability in relation to implant design (conical vs. semiconical and wide-pitch vs narrow-pitch) using resonance frequency analysis. Twenty patients with bilateral edentulous maxillary premolar region were selected. In one hemiarch, conical implants with wide pitch (group 1) were installed; in the other hemiarch, semiconical implants with narrow pitch were installed (group 2). The implant allocation was randomized. The implant stability quotient (ISQ) was measured by resonance frequency analysis immediately following implant placement to assess primary stability (time 1) and at 90 days after placement (time 2). In group 1, the mean and standard deviation ISQ for time 1 was 65.8 ± 6.22 (95% confidence interval [CI], 55 to 80), and for time 2, it was 68.0 ± 5.52 (95% CI, 57 to 77). In group 2, the mean and standard deviation ISQ was 63.6 ± 5.95 (95% CI, 52 to 78) for time 1 and 67.0 ± 5.71 (95% CI, 58 to 78) for time 2. The statistical analysis demonstrated significant difference in the ISQ values between groups at time 1 (P = .007) and no statistical difference at time 2 (P = .54). The greater primary stability of conical implants with wide pitch compared with semiconical implants with narrow pitch might suggest a preference for the former in case of the adoption of immediate or early loading protocols.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Samuel Jeu ◽  
Etienne Guillaud ◽  
Laurent Hauret ◽  
Jean-Christophe Coutant ◽  
Bruno Ella

Objective. The aim of this study was to assess the influence of the interimplant distance on the implant primary stability (ISQ) by Resonance Frequency Analysis (RFA). Method. Forty-five implants were placed in the mandible of human cadavers and 108 in artificial bone substrates in the form of polyurethane foam blocks. Primary implant stability was successively measured first by RFA immediately after the placement of the first implant (A) and then after two other implants (B and C) proximal and distal to the first implant. The interimplant distances were defined from 1 to 6 mm and the three primary stability values measured were compared. Results. On the mandibles, no correlation was observed between the interimplant distances and primary stability. On the polyurethane foam block, the primary stability of implant A increased significantly (p<0.001) after the placement of implant B but remained constant after placement of implant C. Conclusion. Reducing the interimplant distance does not affect the primary stability on dry bone or artificial substrate.


2020 ◽  
Vol 9 (9) ◽  
pp. 2977
Author(s):  
Tanja Grobecker-Karl ◽  
Anthony Dickinson ◽  
Siegfried Heckmann ◽  
Matthias Karl ◽  
Constanze Steiner

Insertion energy has been advocated as a novel measure for primary implant stability, but the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one specific bone level implant system were placed in layered polyurethane foam measuring maximum insertion torque, torque–time curves, and primary stability using resonance frequency analysis (RFA). Insertion energy was calculated as area under torque–time curve applying the trapezoidal formula. Statistical analysis was based on analysis of variance, Tukey honest differences tests and Pearson’s product moment correlation tests (α = 0.05). Implant stability (p = 0.01) and insertion energy (p < 0.01) differed significantly among groups, while maximum insertion torque did not (p = 0.17). Short implants showed a significant decrease in implant stability (p = 0.01), while reducing implant diameter did not cause any significant effect. Applying the drilling protocol for dense bone resulted in significantly increased insertion energy (p = 0.02) but a significant decrease in implant stability (p = 0.04). Insertion energy was not found to be a more reliable parameter for evaluating primary implant stability when compared to maximum insertion torque and resonance frequency analysis.


2018 ◽  
Vol 44 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Karine Câmara Silva ◽  
Elton Gonçalves Zenóbio ◽  
Paulo Eduardo Alencar Souza ◽  
Rodrigo Villamarim Soares ◽  
Maurício Greco Cosso ◽  
...  

This study aimed to compare the primary and secondary stability, measured by resonance frequency analysis (RFA), in implants of different lengths installed in areas submitted to maxillary sinus lift. Correlation between RFA and implant insertion torque was also assessed. Twenty implants of 9 and 11 mm were inserted in areas submitted to maxillary sinus lift. The insertion torque was measured by the Bien Air motor. Osstell, through RFA, determined the implant stability quotient (ISQ) 2 times: the day of implant installation (T1) and 90 days after implant installation (T2). No differences were observed in the ISQ between T1 and T2 when the 20 implants were grouped, nor when the 9 mm implants were evaluated separately. In contrast, when the 11 mm values were evaluated separately, the ISQ was significantly higher in T2 than in T1 (P &lt; .05). In T1, 9 mm implants had a higher ISQ than 11 mm ones (P &lt; .05), whereas in T2, the implants of 11 mm showed a higher ISQ than did the 9 mm implants (P &lt; .05). There was no difference in insertion torque between 9 and 11 mm implants (P &gt; .05), nor was there a correlation between ISQ and insertion torque (P &gt; .05). In conclusion, longer implants (11 mm) presented a significant increase in ISQ values during the healing period when installed in areas previously submitted to maxillary sinus lift. This phenomenon was not observed for shorter implants (9 mm). Finally, no correlation was observed between ISQ and insertion torque.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Malou Hultcrantz

Objective. To longitudinally follow the osseointegration using Resonance Frequency Analysis (RFA) for different lengths of abutment on a new wide bone-anchored implant, introduced with the non-skin thinning surgical technique.Study Design. A single-center, prospective 1 year study following adults with bone-anchored hearing implants.Materials and Methods. Implantation was performed and followed for a minimum of 1 year. All patients were operated on according to the tissue preserving technique. A 4.5 mm wide fixture (Oticon Medical) with varying abutments (9 to 12 mm) was used and RFA was tested 1 week, 7 weeks, 6 months, and 12 months later. Implant Stability Quotient (ISQ), was measured from 1 to 100. Stability was compared to a group of patients(N=7)implanted with another brand (Cochlear BI400) of 4.5 mm fixtures.Results. All 10 adults concluded the study. None of the participants lost their implant during the test period indicating a good anchoring of abutments to the wide fixture tested. Stability testing was shown to vary depending on abutment length and time after surgery and with higher values for shorter abutments and increasing values over the first period of time. One patient changed the abutment from 12 to 9 mm and another from a 9 to a 12 during the year. No severe skin problems, numbness around the implant, or cosmetic problems arose.Conclusion. After 1 year of follow-up, combination of a wide fixture implant and the non-skin thinning surgical technique indicates a safe procedure with good stability and no abutment losses.


Author(s):  
Paula López-Jarana ◽  
Carmen María Díaz-Castro ◽  
Artur Falcão ◽  
Blanca Ríos-Carrasco ◽  
Ana Fernandez-Palacín ◽  
...  

In order to apply the “one-abutment–one-time” concept, we evaluated the possibility of measuring resonance frequency analysis (RFA) on the abutment. This trial aimed to compare the Implant Stability Quotient (ISQ) values obtained by the PenguinRFA when screwing the transducer onto the implant or onto abutments with different heights and angulations. Eighty implants (VEGA®, Klockner Implant System, SOADCO, Les Escaldes, Andorra) were inserted into fresh bovine ribs. The groups were composed of 20 implants, 12 mm in length, with two diameters (3.5 and 4 mm). Five different abutments for screwed retained restorations (Permanent®) were placed as follows: straight with 1, 2, and 3 mm heights, and angulated at 18° with 2 and 3 mm heights. The mean value of the ISQ measured directly on the implant was 75.72 ± 4.37. The mean value of the ISQ registered over straight abutments was 79.5 ± 8.50, 76.12 ± 6.63, and 71.42 ± 6.86 for 1, 2, and 3 mm height abutments. The mean ISQ over angled abutments of 2 and 3 mm heights were 68.74 ± 4.68 and 64.51 ± 4.53 respectively. The present study demonstrates that, when the ISQ is registered over the straight abutments of 2 and 3 mm heights, the values decrease, and values are lower for angled, 3 mm height abutments.


Sign in / Sign up

Export Citation Format

Share Document