scholarly journals Is It Possible to Monitor Implant Stability on a Prosthetic Abutment? An In Vitro Resonance Frequency Analysis

Author(s):  
Paula López-Jarana ◽  
Carmen María Díaz-Castro ◽  
Artur Falcão ◽  
Blanca Ríos-Carrasco ◽  
Ana Fernandez-Palacín ◽  
...  

In order to apply the “one-abutment–one-time” concept, we evaluated the possibility of measuring resonance frequency analysis (RFA) on the abutment. This trial aimed to compare the Implant Stability Quotient (ISQ) values obtained by the PenguinRFA when screwing the transducer onto the implant or onto abutments with different heights and angulations. Eighty implants (VEGA®, Klockner Implant System, SOADCO, Les Escaldes, Andorra) were inserted into fresh bovine ribs. The groups were composed of 20 implants, 12 mm in length, with two diameters (3.5 and 4 mm). Five different abutments for screwed retained restorations (Permanent®) were placed as follows: straight with 1, 2, and 3 mm heights, and angulated at 18° with 2 and 3 mm heights. The mean value of the ISQ measured directly on the implant was 75.72 ± 4.37. The mean value of the ISQ registered over straight abutments was 79.5 ± 8.50, 76.12 ± 6.63, and 71.42 ± 6.86 for 1, 2, and 3 mm height abutments. The mean ISQ over angled abutments of 2 and 3 mm heights were 68.74 ± 4.68 and 64.51 ± 4.53 respectively. The present study demonstrates that, when the ISQ is registered over the straight abutments of 2 and 3 mm heights, the values decrease, and values are lower for angled, 3 mm height abutments.

2019 ◽  
Vol 9 (5) ◽  
pp. 860 ◽  
Author(s):  
Antonio Nappo ◽  
Carlo Rengo ◽  
Giuseppe Pantaleo ◽  
Gianrico Spagnuolo ◽  
Marco Ferrari

Implant stability is relevant for the correct osseointegration and long-term success of dental implant treatments. The aim of this study has been to evaluate the influence of implant dimensions and position on primary and secondary stability of implants placed in maxilla using resonance frequency analysis. Thirty-one healthy patients who underwent dental implant placement were enrolled for the study. A total of 70 OsseoSpeed TX (Astra Tech Implant System—Dentsply Implants; Mölndal, Sweden) implants were placed. All implants have been placed according to a conventional two-stage surgical procedure according to the manufacturer instructions. Bone quality and implant stability quotient were recorded. Mean implant stability quotient (ISQ) at baseline (ISQ1) was statistically significant lower compared to 3-months post-implant placement (ISQ2) (p < 0.05). Initial implant stability was significantly higher with 4 mm diameter implants with respect to 3.5 mm. No differences were observed within maxilla regions. Implant length, diameter and maxillary regions have an influence on primary stability.


2015 ◽  
Vol 41 (6) ◽  
pp. e281-e286 ◽  
Author(s):  
Sergio Alexandre Gehrke ◽  
Ulisses Tavares da Silva ◽  
Massimo Del Fabbro

The purpose of this study was to assess implant stability in relation to implant design (conical vs. semiconical and wide-pitch vs narrow-pitch) using resonance frequency analysis. Twenty patients with bilateral edentulous maxillary premolar region were selected. In one hemiarch, conical implants with wide pitch (group 1) were installed; in the other hemiarch, semiconical implants with narrow pitch were installed (group 2). The implant allocation was randomized. The implant stability quotient (ISQ) was measured by resonance frequency analysis immediately following implant placement to assess primary stability (time 1) and at 90 days after placement (time 2). In group 1, the mean and standard deviation ISQ for time 1 was 65.8 ± 6.22 (95% confidence interval [CI], 55 to 80), and for time 2, it was 68.0 ± 5.52 (95% CI, 57 to 77). In group 2, the mean and standard deviation ISQ was 63.6 ± 5.95 (95% CI, 52 to 78) for time 1 and 67.0 ± 5.71 (95% CI, 58 to 78) for time 2. The statistical analysis demonstrated significant difference in the ISQ values between groups at time 1 (P = .007) and no statistical difference at time 2 (P = .54). The greater primary stability of conical implants with wide pitch compared with semiconical implants with narrow pitch might suggest a preference for the former in case of the adoption of immediate or early loading protocols.


2018 ◽  
Vol 44 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Karine Câmara Silva ◽  
Elton Gonçalves Zenóbio ◽  
Paulo Eduardo Alencar Souza ◽  
Rodrigo Villamarim Soares ◽  
Maurício Greco Cosso ◽  
...  

This study aimed to compare the primary and secondary stability, measured by resonance frequency analysis (RFA), in implants of different lengths installed in areas submitted to maxillary sinus lift. Correlation between RFA and implant insertion torque was also assessed. Twenty implants of 9 and 11 mm were inserted in areas submitted to maxillary sinus lift. The insertion torque was measured by the Bien Air motor. Osstell, through RFA, determined the implant stability quotient (ISQ) 2 times: the day of implant installation (T1) and 90 days after implant installation (T2). No differences were observed in the ISQ between T1 and T2 when the 20 implants were grouped, nor when the 9 mm implants were evaluated separately. In contrast, when the 11 mm values were evaluated separately, the ISQ was significantly higher in T2 than in T1 (P &lt; .05). In T1, 9 mm implants had a higher ISQ than 11 mm ones (P &lt; .05), whereas in T2, the implants of 11 mm showed a higher ISQ than did the 9 mm implants (P &lt; .05). There was no difference in insertion torque between 9 and 11 mm implants (P &gt; .05), nor was there a correlation between ISQ and insertion torque (P &gt; .05). In conclusion, longer implants (11 mm) presented a significant increase in ISQ values during the healing period when installed in areas previously submitted to maxillary sinus lift. This phenomenon was not observed for shorter implants (9 mm). Finally, no correlation was observed between ISQ and insertion torque.


2012 ◽  
Vol 83 (2) ◽  
pp. 230-238 ◽  
Author(s):  
Manuel Nienkemper ◽  
Benedict Wilmes ◽  
Agamemnon Panayotidis ◽  
Alexander Pauls ◽  
Vladimir Golubovic ◽  
...  

ABSTRACT Objective: To investigate whether resonance frequency analysis (RFA) is suitable to measure orthodontic mini-implant stability. Implant size significantly affects the level of resonance frequency. Regarding the operating mode of RFA, it has to be proven whether the resonance frequency of mini-implants in bone fits the range of frequency emitted by the Osstell ISQ device. Material and Methods: For this purpose the SmartPegs in the Osstell ISQ device were modified to fit with the inner screw thread of orthodontic mini-implants, and 110 mini-implants were inserted into porcine pelvic bone. RFA was performed parallel and perpendicular to the run of superficial bone fibers. A suitability test, Periotest, was also performed in the same directions. Compacta thickness was measured using cone-beam computed tomography. Correlation tests and linear regression analysis were carried out between the three methods. Results: The RFA showed a mean Implant Stability Quotient value of 36.36 ± 2.67, and the Periotest mean value was −2.10 ± 1.17. The differences between the two directions of measurement were statistically significant (P &gt; .001) for RFA and the Periotest. There was a high correlation between RFA and the Periotest (r  =  −0.90) and between RFA and compacta thickness (r  =  0.71). The comparison between the Periotest and compacta thickness showed a correlation coefficient of r  =  −0.64. Conclusion: The present results suggest that RFA is feasible as a measurement method for orthodontic mini-implant stability. As a consequence, it could be used for clinical evaluation of current stability and allow stability-related loading of mini-implants to reduce the failure rate.


2011 ◽  
Vol 37 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Ashish Thomas Kunnekel ◽  
K. Chandrasekharan Nair ◽  
E. Munirathnam Naidu ◽  
Gomathinayagam Sivagami

Abstract The study was designed to determine the relationship between implant stability quotient (ISQ) values measured using resonance frequency analysis (RFA) and implant-bone distance measured histomorphometrically. Ten identical implants were equally divided into 2 groups based on primary stability at placement. Osteotomies were prepared in harvested goat femurs. ISQ values were measured and compared with implant-bone distance determined by micrometry. Based on the results, it was concluded that RFA can be used to measure implant stability reliably.


2015 ◽  
Vol 4 (2) ◽  
pp. 124-129
Author(s):  
Mohammed Jasim Aljuboori ◽  
Luiz Carlos Magno Filho ◽  
Farah Saadi Al-Obaidi ◽  
Hussein Ali Al-Wakeel ◽  
Maan Ibrahim Al-Marzok

ABSTRACT Objectives The volume and density of the bone surrounding an implant directly affect the implant stability during the healing period. The aim of this study was to determine the correlations between resonance frequency analysis (RFA) readings and implant-tooth distances at the crestal and average apicalcrestal levels. Materials and methods Nine patients received 22 implants. Periapical radiographs were taken at 6 weeks, and the implant-tooth mesial and distal crestal level distances were measured, along with the mesial and distal apical levels. The average mesial (AM) and average distal (AD) apical-crestal distances were calculated. In cases in which either the AM or the AD of the implant was below 4 mm, the specimens were placed in the AMD– group; when both the AM and the AD were greater than 4 mm, the specimens were placed in the AMD+ group. The lower values were used for both groups. Resonance frequency analysis measurements were taken in the mesiodistal direction at 6 weeks. The correlations between the mean RFAs and the means of the distances were examined using Spearman's or Pearson's correlation tests, depending on the distributions of the data. Results The mean and SD of the AD group was 3.99 ± 3.19. The mean and SD of the AM group was 3.80 ± 2.67. The mean and SD of the AD– group was 2.72 ± 0.89. The mean and SD of the AD+ group was 6.34 ± 2.94. The mean and SD of the RFAs at 6 weeks was 77.82 ± 5.24, and for the AMD– and AMD+ groups, these measures were 78 ± 5.55 and 77.64 ± 5.36, respectively. None of the correlations between the RFAs and any of the distances were significant: AD (r = 0.114; Pearson's test, p < 0.05), AM (r = – 0.217; Spearman's test p < 0.05), AMD– (r = 0.248; Pearson's test, p < 0.05), and AMD+ (r = 0.3; Spearman's test, p < 0.05). Conclusion Within the limitations of this study, no correlations between the RFA readings and the implant-tooth distances were found at any level or distance. How to cite this article Aljuboori MJ, Filho LCM, Al-Obaidi FS, Al-Wakeel HA, Al-Marzok MI. What is the Effect of Implant-tooth Distance on Resonance Frequency Analysis Measurements? Int J Experiment Dent Sci 2015;4(2):124-129.


Sign in / Sign up

Export Citation Format

Share Document