scholarly journals Dissecting the Role of Curcumin in Tumour Growth and Angiogenesis in Mouse Model of Human Breast Cancer

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Sabrina Bimonte ◽  
Antonio Barbieri ◽  
Giuseppe Palma ◽  
Domenica Rea ◽  
Antonio Luciano ◽  
...  

Breast cancer is considered the most common cancer for women worldwide and it is now the second leading cause of cancer-related deaths among females in the world. Since breast cancer is highly resistant to chemotherapy, alternative anticancer strategies have been developed. In particular, many studies have demonstrated that curcumin, a derivative of turmeric, can be used as natural agent in treatment of some types of cancer by playing antiproliferative and antioxidant effects. In our study, we assessed the antitumor activities of curcumin in ER-negative human breast cancer cell line resistant to chemotherapy, MDA.MB231 byin vitroandin vivoexperiments.In vitrodata allowed us to demonstrate that curcumin played a role in regulation of proliferation and apoptosis in MDA.MB231 cells.In vivo, by generation of mouse model of breast cancer, we showed that treatment of curcumin inhibited tumor growth and angiogenesis. Specifically, we showed that curcumin is able to deregulate the expression of cyclin D1, PECAM-1, and p65, which are regulated by NF-κB. Our data demonstrated that curcumin could be used as an adjuvant agent to chemotherapy in treatment of triple negative breast cancer.

BMC Cancer ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Larisa M Haupt ◽  
Erik W Thompson ◽  
Ann EO Trezise ◽  
Rachel E Irving ◽  
Michael G Irving ◽  
...  

2020 ◽  
Author(s):  
Jilei Zhang ◽  
Rong Lu ◽  
Yong-Guo Zhang ◽  
Żaneta Matuszek ◽  
Yinglin Xia ◽  
...  

Abstract Background: Transfer RNA (tRNA) queuosine (Q)-modifications occur specifically in 4 cellular tRNAs at the wobble anticodon position. tRNA Q-modification in human cells depends on the gut microbiome because the microbiome product queuine is required for its installation by the enzyme queuine tRNA ribosyltransferase catalytic subunit 1 (QTRT1) encoded in the human genome. Although tRNA Q-modification has been studied a long time regarding its properties in decoding and tRNA fragment generation, how QTRT1 affects tumorigenesis is still poorly understood. Results: We generated single clones of QTRT1-knockout breast cancer MCF7 cells using Double Nickase Plasmid. The impacts of QTRT1-delection on cell proliferation and migration in vitro were evaluated using cell culture, while the regulations on tumor growth in vivo were evaluated using xenograft BALB/c nude mouse model. We found that QTRT1 completely deleted from human breast cancer MCF7 cells could change the functions of regulation genes which are critical in cell proliferation, tight junction formation, and migration in human breast cancer cells in vitro and a breast tumor mouse model in vivo . We also found that microbiome maybe involved in the breast cancer development in vivo. Conclusions: Our results demonstrate that the QTRT1 gene and microbiome play a critical role in breast cancer development.


Sign in / Sign up

Export Citation Format

Share Document