scholarly journals Chemical Composition andIn VitroAntibacterial Activity ofMentha spicataEssential Oil against Common Food-Borne Pathogenic Bacteria

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Yasser Shahbazi

The aim of the present study was to investigate chemical composition and antibacterial activity of essential oil from the leaf ofMentha spicataplant against common food-borne pathogenic bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Listeria monocytogenes, Salmonella typhimurium, andEscherichia coliO157:H7). Chemical composition of the essential oil was identified by gas chromatography coupled with mass spectrometer detector (GC-MS). The antibacterial activity of the essential oil was evaluated by broth microdilution method and agar disk diffusion assay. According to the result of GC-MS analysis, 18 components were identified, accounting for 99.89% of the whole essential oil. The main components were carvone (78.76%), limonene (11.50%),β-bourbonene (11.23%),cis-dihydrocarveol (1.43%),trans-caryophyllene (1.04%), menthone (1.01%), menthol (1%), and terpinen-4-ol (0.99). The essential oil exhibited moderate level of antibacterial activity against all test microorganisms. In general, Gram-positive bacteria were more susceptible toM. spicataessential oil than Gram-negative bacteria.L. monocytogeneswas the most sensitive of the microorganisms to the antibacterial activity ofM. spicataessential oil (inhibition zone = 22 mm and MIC and MBC = 2.5 µL/mL). Based on our results, the essential oil ofM. spicataplant collected from Kermanshah province, west of Iran, has a potential to be applied as antibacterial agent.

2014 ◽  
Vol 9 (2) ◽  
pp. 1934578X1400900 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Jovana L. Jović ◽  
Marija S. Marković

The chemical composition and antibacterial activity were examined of Libanotis montana Crantz subsp. leiocarpa (Heuff.) Soó. (Apiaceae) essential oil. Gas chromatography and gas chromatography/mass spectrometry were used to analyze the chemical composition of the oil. The antibacterial activity was investigated by the broth microdilution method against thirteen bacterial strains. The interactions of the essential oil and three standard antibiotics: tetracycline, streptomycin and chloramphenicol toward five selected strains were evaluated using the microdilution checkerboard assay in combination with chemometric methods: principal components analysis and hierarchical cluster analysis. Sesquiterpene hydrocarbons were the most abundant compound class in the oil (67.2%), with β-elemene (40.4%) as the major compound. The essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro, but the combinations L. montana oil-chloramphenicol and L. montana oil-tetracycline exhibited mostly either synergistic or additive interactions. These combinations reduced the minimum effective dose of the antibiotics and, consequently, minimized their adverse side effects. In contrast, the association of L. montana essential oil and streptomycin was characterized by strong antagonistic interactions against Escherichia coli ATCC 25922. In the PCA and HCA analyses, streptomycin stood out and formed a separate group.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Dejan M. Nikolić ◽  
Olga G. Cvetković ◽  
...  

The composition and antimicrobial activity of the essential oil of Heracleum sibiricum L. (Apiaceae) was studied. The aerial part of plant was hydro-distilled and chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-six compounds, corresponding to 95.12% of the total oil, were identified. Esters represented the major chemical class (69.55%) while the main constituents were octyl butanoate (36.82%), hexyl butanoate (16.08%), 1-octanol (13.62%) and octyl hexanoate (8.10%). Antibacterial activity of the essential oil and reference antibiotics against nine bacterial strains was tested by the broth microdilution method. The results of the bioassays showed that essential oil had slight antimicrobial activities against all tested microorganisms (MIC and MBC values were in the range of 2431.2 to 9724.8 μg/mL). Reference antibiotics were active in concentrations between 0.5 and 16.0 μg/mL. The results confirm that Gram-positive bacteria were more susceptible to the essential oil of H. sibiricum, in comparison with Gram-negative bacteria.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Zafer Asım Kaplancıklı ◽  
Mehlika Dilek Altıntop ◽  
Belgin Sever ◽  
Zerrin Cantürk ◽  
Ahmet Özdemir

In an effort to develop potent antimicrobial agents, new thiosemicarbazone derivatives were synthesizedviathe reaction of 4-[4-(trifluoromethyl)phenyl]thiosemicarbazide with aromatic aldehydes. The compounds were evaluated for their inhibitory effects on pathogenic bacteria and yeasts using the CLSI broth microdilution method. Microplate Alamar Blue Assay was also carried out to determine the antimycobacterial activities of the compounds againstMycobacterium tuberculosisH37Rv. Among these derivatives, compounds5and11were more effective againstEnterococcus faecalis(ATCC 29212) than chloramphenicol, whereas compounds1,2, and12and chloramphenicol showed the same level of antibacterial activity againstE. faecalis. Moreover, compound2and chloramphenicol exhibited the same level of antibacterial activity againstStaphylococcus aureus. On the other hand, the most potent anticandidal derivatives were found as compounds2and5. These derivatives and ketoconazole exhibited the same level of antifungal activity againstCandida glabrata. According to the Microplate Alamar Blue Assay, the tested compounds showed weak to moderate antitubercular activity.


The aims of this study were to investigate the antibacterial activity and interaction effect of Litsea cubeba fruit essential oil (EO) and chitosan (CTS) against food-borne bacteria. The inhibition zone of EO, CTS and EO-CTS mixture against Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 25923 and Bacillus cereus ATCC 13061 ranged from 39.0 - 57.3 mm; 11.7 - 15.5 mm and 29.7 - 39.3 mm, respectively. The minimum inhibitory concentration (MIC) of EO and CTS were 5.53 mg/mL and from 0.60 - 0.80 mg/mL, respectively. The synergistic effects were found when EO and CTS were used in combination with fractional inhibitory concentration values ranging from 0.62 - 0.67. The MIC of the EO and CTS combination was decreased from 6 to 8-fold and 2-fold compared to individual treatment by EO and CTS, respectively. The obtained results demonstrated the potential application of EO-CTS mixture in food preservation.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Aicha Ben Nouri ◽  
Wissal Dhifi ◽  
Sana Bellili ◽  
Hanene Ghazghazi ◽  
Chedia Aouadhi ◽  
...  

The extraction yield of the essential oil (EO) extracted by hydrodistillation from the cones of TunisianCupressus sempervirensL. was of 0.518%. The chemical composition was analyzed by GC-MS. Results showed that this essential oil was mainly composed of monoterpene hydrocarbons (65%) withα-pinene as the major constituent (47.51%). Its antioxidant activity was ascertained by evaluating the total antioxidant capacity and also by evaluating its inhibitory effect against DPPH and ABTS radicals. In addition, it showed a strong antioxidant power against the DPPH (IC50= 151 µg/mL) and ABTS (IC50= 176.454 µg/mL) radicals scavenging. Moreover, its antibacterial activity was tested against different species of pathogenic bacteria (three Gram-positive and eight Gram-negative bacteria). The bacterial strains susceptible to the evaluated oil wereBacillus subtilis,Escherichia coli,Klebsiella oxytoca,Morganella morganii,Shigella, andVibrio cholerae.


2008 ◽  
Vol 3 (2) ◽  
pp. 149-154 ◽  
Author(s):  
Zoran Maksimović ◽  
Marina Milenković ◽  
Dragana Vučićević ◽  
Mihailo Ristić

AbstractThis paper presents the results of a study on chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil from Vojvodina province (north of Serbia). The investigated oil was hydrodistilled from a flowering plant and analysed by GC and GC-MS. Fifty-three constituents were identified (>97% of total oil), with geranial (41.42%, w/w) and neral (29.61%, w/w) as the most prominent. The antimicrobial activity of the oil was evaluated using agar disc diffusion and broth microdilution method against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli, two strains of Klebsiella pneumoniae and two strains of Candida albicans. The essential oil exhibited antimicrobial activity to varying degrees against all tested strains. The maximum activity of T. Pannonicus oil was observed against E. coli, S. aureus and both tested strains of C. Albicans (MIC = 50 µ/ml, each). Moderate activity was observed against P. aeruginosa and one of the tested strains of K. Pneumoniae (MIC = 200 µ/ml), while E. faecalis and the other strain of K. Pneumoniae expressed a higher degree of resistance (MIC > 200 µ/ml). This study confirms that essential oil of T. pannonicus possesses remarkable in vitro antimicrobial activity against several medicinally important pathogens. This is attributable to lemon-scented citral, a mixture of geranial and neral, which has well-documented antimicrobial activity against a range of bacteria and fungi.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Kristina Ložienė ◽  
Juozas Labokas ◽  
Vaida Vaičiulytė ◽  
Jurgita Švedienė ◽  
Vita Raudonienė ◽  
...  

The study aimed to establish the chemical composition of fruit essential oils of M. gale and test their activities against the selected pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii), yeasts (Candida albicans, C. parapsilosis), fungi (Aspergillus fumigatus, A. flavus) and dermatophytes (Trichophyton rubrum, T. mentagrophytes). Fruit samples from natural (Western Lithuania) and anthropogenic (Eastern Lithuania) M. gale populations were studied separately. Essential oils were isolated from dried fruits by hydrodistillation and analysed by GC/FID and GC/MS methods; enantiomeric composition of α-pinene was established by chiral-phase capillary GC. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) of essential oils were determined using the broth microdilution method. Plants from the natural population with a humid marine climate accumulated significantly higher amounts of fruit essential oils (3.34±0.05%) than those from the anthropogenic population with a more continental climate (2.71±0.22%). In total, 39 volatiles including α-pinene (23.52–27.17%), 1,8-cineole (17.19–18.84%) and α-phellandrene (9.47–10.03%) as main compounds were identified. Chiral analysis demonstrated that (1S)-(–)-α-pinene prevailed over (1R)-(+)-α-pinene and amounted to 94.09–95.28% of all fraction of this monoterpene. The antimicrobial study in vitro indicated that C. parapsilosis, dermatophytes and Aspergillus fungi were more susceptible to fruit essential oils of M. gale, whereas E. coli and C. albicans were weakly inhibited even at the highest essential oil concentration. The strongest growth-inhibitory and bactericidal effect of sweet gale essential oil was established on S. aureus. This could be attributed to the major essential oil compounds with known antimicrobial activity, such as α-pinene, 1,8-cineole and a-phellandrene. Keywords: Myrica gale; essential oil; chemical compounds; terpenes; enantiomers; antimicrobial.


2019 ◽  
Vol 13 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Saman Mahdavi ◽  
Mojtaba Kheyrollahi ◽  
Hossein Sheikhloei ◽  
Alireza Isazadeh

Introduction: The use of synthetic preservatives has been increasing in the food industry, and this leads to an increased incidence of gastrointestinal diseases and cancers in humans in the long run. Aims & Objectives: The aim of this study was to investigate the antibacterial and antioxidant activities of Nasturtium officinale essential oil on some important food borne bacteria. Materials & Methods: In this study, the antibacterial activity of N. officinale essential oil was evaluated on Staphylococcus aureus, Bacillus cereus, Escherichia coli and Salmonella enteric by microdilution method. Also, the antioxidant activity of this essential oil was evaluated by inactivating free radicals produced by 2,2-diphenyl-1-picrylhydrazyl (DPPH). Finally, the chemical compounds of the N. officinale essential oil were evaluated by gas chromatography- mass spectrometry (GC/MS). Results: The results showed that S. enteric and E. coli isolates had the most resistance and B. cereus isolates had the most susceptibility to N. officinale essential oil. The evaluation of antioxidant properties showed that in the same concentrations, the antioxidant effect of N. officinale was less than BHT. The obtained results from GC/MS showed that Phytol (30.20%) was the highest proportion and Megastigmatrienone 2 (0.18%) was the lowest proportion of essential oil. Conclusion: In general, the results of this study showed that N. officinale essential oil has an appropriate antibacterial activity against gram positive bacteria and can be used as a new antibacterial and antioxidant compound in the food industry.


Sign in / Sign up

Export Citation Format

Share Document