scholarly journals Finite-Time Formation Control without Collisions for Multiagent Systems with Communication Graphs Composed of Cyclic Paths

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
J. F. Flores-Resendiz ◽  
E. Aranda-Bricaire ◽  
J. González-Sierra ◽  
J. Santiaguillo-Salinas

This paper addresses the formation control problem without collisions for multiagent systems. A general solution is proposed for the case of any number of agents moving on a plane subject to communication graph composed of cyclic paths. The control law is designed attending separately the convergence to the desired formation and the noncollision problems. First, a normalized version of the directed cyclic pursuit algorithm is proposed. After this, the algorithm is generalized to a more general class of topologies, including all the balanced formation graphs. Once the finite-time convergence problem is solved we focus on the noncollision complementary requirement adding a repulsive vector field to the previous control law. The repulsive vector fields display an unstable focus structure suitably scaled and centered at the position of the rest of agents in a certain radius. The proposed control law ensures that the agents reach the desired geometric pattern in finite time and that they stay at a distance greater than or equal to some prescribed lower bound for all times. Moreover, the closed-loop system does not exhibit undesired equilibria. Numerical simulations and real-time experiments illustrate the good performance of the proposed solution.

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lina Jin ◽  
Shuanghe Yu ◽  
Dongxu Ren

This paper deals with the circular formation control problem of multiagent systems for achieving any preset phase distribution. The control problem is decomposed into two parts: the first is to drive all the agents to a circle which either needs a target or not and the other is to arrange them in positions distributed on the circle according to the preset relative phases. The first part is solved by designing a circular motion control law to push the agents to approach a rotating transformed trajectory, and the other is settled using a phase-distributed protocol to decide the agents’ positioning on the circle, where the ring topology is adopted such that each agent can only sense the relative positions of its neighboring two agents that are immediately in front of or behind it. The stability of the closed-loop system is analyzed, and the performance of the proposed controller is verified through simulations.


Robotica ◽  
2019 ◽  
Vol 38 (6) ◽  
pp. 1123-1137
Author(s):  
J. F. Flores-Resendiz ◽  
E. Aranda-Bricaire

SUMMARYIn this paper, a general solution to the formation control problem without collisions for first-order multi-agent systems is proposed. The case of an arbitrary number of mobile agents on a plane with saturated input velocity is analysed. Besides, conditions on the communication graph among agents are relaxed to the only requirement of containing a directed spanning tree. This general approach is an extended result from the simpler case of combinations of cyclic pursuit communication graphs. The proposed solution to this problem is designed in two steps. First, the asymptotic convergence in the absence of collisions is ensured. After this, the non-collision problem is faced by analysing the most general possible geometrical scenario which can lead to collision among agents. Discontinuous vector fields with unstable counterclockwise focus behaviour are applied by every agent in order to repel each other. Numerical simulations illustrate the performance of the proposed scheme.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Xuejing Lan ◽  
Wenbiao Xu ◽  
Yun-Shan Wei

This paper considers the distributed 3-dimensional (3D) distance-based formation control of multiagent systems, where the agents are connected based on an acyclic minimally structural persistent (AMSP) graph. A parameter is designed according to the desired formation shape and is used to solve the problem that there are two formation shapes satisfying the same distance requirements. The unknown moving velocity of the leader agent is estimated adaptively by the followers requiring only the relative position measurements with respect to their local coordinate systems. In addition, the proposed formation controller provides a new way for the agent to leave the initial coplanar location. The 3D formation control law is globally asymptotically stable and has been demonstrated based on the Lyapunov theorem. Finally, two numerical simulations are presented to support the theoretical analysis.


2011 ◽  
Vol 403-408 ◽  
pp. 1499-1502
Author(s):  
Xin Jun Ren ◽  
Yan Jun Shen

In this paper, we use the definition of control Lyapunov functions to study finite time inverse optimal control for affine nonlinear systems. Based on control Lyapunov functions, a finite time universal control formula is presented, which can ensure the closed-loop system is finite time stable. From this, less conservative conditions for the finite time inverse optimal control are derived. We design a finite time inverse optimal control law, which minimizes the cost functional. A numerical example verifies the validity of the proposed method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Qu Chenggang ◽  
Cao Xibin ◽  
Hamid Reza Karimi ◽  
Zhang Zhuo ◽  
Zhang Zexu

This paper investigates the finite-time distributedL2–L∞consensus control problem of multiagent systems with parameter uncertainties. The relative states of neighboring agents are used to construct the control law and some agents know their own states. By substituting the control input into multiagent systems, an augmented closed-loop system is obtained. Then, we analyze its finite-time boundedness (FTB) and finite-timeL2–L∞performance. A sufficient condition for the existence of the designed controller is given with the form of linear matrix inequalities (LMIs). Finally, simulation results are described.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xiushan Cai ◽  
Yuhang Lin ◽  
Wei Zhang

This paper deals with finite time inverse optimal stabilization for stochastic nonlinear systems. A concept of the stochastic finite time control Lyapunov function (SFT-CLF) is presented, and a control law for finite time stabilization for the closed-loop system is obtained. Furthermore, a sufficient condition is developed for finite time inverse optimal stabilization in probability, and a control law is designed to ensure that the equilibrium of the closed-loop system is finite time inverse optimal stable. Finally, an example is given to illustrate the applications of theorems established in this paper.


Sign in / Sign up

Export Citation Format

Share Document